
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, Mar. 2024 755
Copyright ⓒ 2024 KSII

http://doi.org/10.3837/tiis.2024.03.013 ISSN : 1976-7277

Genetic Algorithm based hyperparameter
tuned CNN for identifying IoT intrusions

Alexander. R1, and Pradeep Mohan Kumar. K2*

1,2 Department of Computing Technologies, SRM Institute of Science and Technology,
Kattankulathur 603203, Tamil Nadu, India

[e-mail: alexander845r@gmail.com, pradeepk@srmist.edu.in]
*Corresponding author: Pradeep Mohan Kumar. K

Received October 4, 2023; revised December 21, 2023; accepted February 26, 2024;

published March 31, 2024

Abstract

In recent years, the number of devices being connected to the internet has grown enormously,
as has the intrusive behavior in the network. Thus, it is important for intrusion detection
systems to report all intrusive behavior. Using deep learning and machine learning algorithms,
intrusion detection systems are able to perform well in identifying attacks. However, the
concern with these deep learning algorithms is their inability to identify a suitable network
based on traffic volume, which requires manual changing of hyperparameters, which
consumes a lot of time and effort. So, to address this, this paper offers a solution using the
extended compact genetic algorithm for the automatic tuning of the hyperparameters. The
novelty in this work comes in the form of modeling the problem of identifying attacks as a
multi-objective optimization problem and the usage of linkage learning for solving the
optimization problem. The solution is obtained using the feature map-based Convolutional
Neural Network that gets encoded into genes, and using the extended compact genetic
algorithm the model is optimized for the detection accuracy and latency. The CIC-IDS-2017
and 2018 datasets are used to verify the hypothesis, and the most recent analysis yielded a
substantial F1 score of 99.23%. Response time, CPU, and memory consumption evaluations
are done to demonstrate the suitability of this model in a fog environment.

Keywords: Bayesian optimization, Extended Compact genetic algorithm(eCGA), Genetic
Algorithm, Internet of Things (IoT), Intrusion Detection System (IDS), Probabilistic model
building genetic algorithm (PMBGA).

mailto:pradeepk@srmist.edu.in

756 Alexander. R et al.: Genetic Algorithm based hyperparameter
tuned CNN for identifying IoT intrusions

1. Introduction

We are instantly awakened by Alexa or Siri with our curtains open, making our daily routine
hassle-free. We've got our microwaves set up to begin cooking. We have actually grown better
organized as a result of all the equipment being interconnected, and sure, Industry 4.0 has
arrived thanks to Internet of Things (IoT) networks [1]. IoT networks are an attempt to connect
numerous devices, including those with computing power, sensors, etc. so that devices can
communicate with each other for improved functioning over the internet [2]. Although it may
seem theoretically straightforward, this is made possible by the development and integration
of many significant technologies of this era, including Big Data, Artificial Intelligence, 5G,
fog computing, and others. By 2025, it is anticipated that 21.5 billion devices will be connected
using these technologies [3]. Better functionality will undoubtedly result from an increase in
the number, but it could also pave the way for security-related assaults. The number of threats
aimed at Internet of Things (IoT) devices has significantly increased, according to the
SonicWall report [4]. According to the research, intrusions and other encrypted threats have
increased worldwide by 132% while IoT malware attacks have increased by 77%. Additionally,
it is predicted that this number will rise in the ensuing years.

The protection of this network is of the utmost importance because IoT networks become
intertwined with regular human activities. Identifying any form of abnormal behavior in the
IoT network is crucial and this is done conventionally using firewalls, gateways, and
encryption technology. These methodologies do not hold significant results as they are all
mechanisms that can’t respond to the newer forms of attacks instantly. The most essential and
practical defense for any network is intrusion detection systems (IDS). Whether a connection
is cable or wireless, the intrusion detection system plays a crucial role in protecting the network
[5]. There are some differences between IoT intrusion detection systems and wired or wireless
network IDS. Due to the heterogeneity of IoT networks, there are some reasons why we cannot
deploy the same wired or wireless IDS into the IoT network. The computing power, operating
systems, protocols, and battery lives of the devices utilized in IoT networks vary [6]. Since
each device implements a security system differently, using strong encryption techniques
typically requires a lot of CPU power, which most IoT network devices don't have. This
necessitates a particular kind of IDS that can operate in spite of heterogeneity and also
recognize and respond to an intrusion attempt like a human.

The sorts of attacks detected in the IoT network vary as well based on the IoT network's
architectural variations. The following are some specifics of layer-wise attacks in the IoT
network. Attacks on the perception layer include service integrity, eavesdropping, jamming,
DoS, and Man-In-The-Middle (MITM) attacks. Selective forwarding, Sybil, sinkholes,
wormholes, and acknowledgment are examples of network layer attacks. Sniff, Inject, Hijack,
DDoS, and Social Engineering are examples of application layer attacks.

In addition, several design-level assaults are frequently seen in IoT networks. IoT-IDS as
it is now can recognize and report attacks at both the layer-level and design-level.

1.1 Motivation
The true problem, though, occurs when the adversary creates an entirely new kind of attack.
The existing IoT-IDS is unable to respond appropriately and frequently generates false alarms
as a result. This calls for a more robust IoT-IDS that can handle newer traffic types more
successfully. Various strategies, including data mining, heuristics, ontology-based systems,
and more recent innovations like machine learning and deep learning, have been used to create
a robust IDS [7]. Machine learning and deep learning are recognized as appropriate techniques

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 757

to enable the intrusion system to make proactive judgements and think like a person. Support
vector machines [8] and random forests [9] are a couple of the machine learning techniques
that are employed. Even while using machine learning algorithms produced impressive results
in terms of detection accuracy, there are several issues to be aware of when using ML for IoT-
IDS. The main worry is that the IoT network is expandable and that the volume of generated
traffic will rise as well. Therefore, using an ensemble or any other hybrid technique, as those
employed in wireless networks [10], may not be the best course of action because they can
lengthen the time needed for detection [11]. Machine learning algorithms take too long when
working with high-dimensional data, making them unsuitable for IoT-IDS.

Deep learning is seen as being a critical component when it comes to handling this
significant dimension of IoT data. To boost the IoT performance, IDS's several deep learning
techniques are applied. Using various deep learning techniques, such as generative adversarial
networks (GANs) [11], autoencoders [12], and deep neural networks (DNNs) [13], some of
the trickier intrusion attempts can also be effectively handled. Despite the fact that detection
accuracy can be quite high, performance or accuracy is tuned by the hyperparameters [14].

The existing machine and deep learning approaches concentrate mainly on improving the
detection accuracy of the intrusion detection system, and the accuracy holds significantly good
for many of the models. However, the accuracy obtained cannot remain the same because the
traffic volume and type are varied. This generates instability in training, hence affecting
accuracy. So, while using deep or machine learning models, it is important to set the ideal
parameters that can handle the data, irrespective of its volume and type. If the right parameters
are not selected, it will have an impact on factors like training duration, computational expense,
structure, and prediction accuracy. Thus, the auto-hyperparameter setting is crucial for the
intrusion detection data so that the intrusion detection system can act more like a human. To
circumvent this problem, the intrusion detection system, if equipped with automatic
hyperparameter tuning, can set an ideal parameter for any type of traffic and volume. This is
the focus of this work, and this auto-hyperparameter tuning using a genetic algorithm can help
the model automatically set the hyperparameter values, irrespective of volume and type.

1.2 Our major contributions
Bayesian or evolutionary algorithms are two methods that can be used to solve the challenge
of automatic hyperparameter tuning. The process of optimizing basic neural networks is
carried out using some neuro-evolution approaches, including NEAT [15], EPNET [16], and
GNARL [17]. One type of evolving network that can optimize the architecture and the
hyperparameters for greater performance is DeepNEAT [18]. One of the common issues with
the Bayesian approach is the amount of computer resources that are consumed in the process
of building different models for different hyperparameters, thus making it unsuitable to run in
fog nodes. Some of the algorithms, like catboost [19] and Bayesian optimization [20], tried to
address the concern of more computing resources, but parallelism was not achieved. So to
address the concerns of having low latency with a higher degree of parallelism, a novel
approach using the Bayesian genetic technique is proposed to address the problem of manual
ideal hyperparameter setting. The idea comes from the probabilistic model-building genetic
algorithm (PMBGA) that operates based on the probability distribution recorded by the
Bayesian network. This study expands on DeepNEAT's concept [19], in which the neural
arrangement is transformed into a chromosome of the Extended Compact Genetic
Algorithm(eCGA), in order to eliminate the issue of manually setting up the hyperparameter
values and to provide a superior latency IDS. As a result, the IoT-IDS has evolved with varied
degrees of precision and can be used to fog nodes.

758 Alexander. R et al.: Genetic Algorithm based hyperparameter
tuned CNN for identifying IoT intrusions

The following are the paper's main contributions:
1. Using the Extended Compact Genetic Algorithm, a novel evolutionary deep neural

network is suggested for IoT-IDS in the fog environment (eCGA). This will determine
which DNN model, in terms of accuracy and latency, should be used in the fog node.

2. The Extended Compact Genetic Algorithm's goal is to minimize the classification
error rate (eCGA) with the decrease in the number of parameters. With fewer relevant
parameters, the accuracy of the model is increased.

3. A population update that can produce a more accurate model for the following one
helps to better direct evolution.

The concept is examined using the CIC-IDS 2017 [21] and CIC-DDoS 2019 datasets, and
the proposed methodology is compared to other cutting-edge techniques for higher accuracy
and shorter latency.

The remaining portions of the paper are structured as follows:
The various deep learning techniques utilized to improve the IoT-detection IDS's accuracy are
discussed in Section 2. The proposed methodology's overall architecture is presented in
Section 3. The experimentation process is described in Section 4, the results are examined in
Section 5, and the study is finished in Section 6.

2 Background and Related Work
The main goal of this research is to provide an enhanced-performance IoT-IDS with a high
detection rate and minimal delay consumption. The state of the art in studies relevant to this
study is discussed in this section, along with the present state of knowledge in those fields.
Anyone can interfere with our daily activities and put our lives in risk thanks to the
interconnected nature of the globe, like in the case of hacking a car and taking control of the
steering wheel. To locate and stop these intruders, precautions must be taken, which is of the
utmost importance. The development of artificial intelligence has made it possible to create a
robust IoT-IDS, which is what is required today. For an IoT-IDS to be effective, machine
learning and deep learning are essential. Thus, we first examine the different methods that
have been applied thus far to increase detection accuracy in this literature, and then we
examine the different ways that have been utilized thus far for parameter adjustment.

2.1. State-of-the-art machine/deep learning models used in detecting intrusions
In some recent studies using machine learning algorithms, voting, bagging, and stacking
ensemble procedures have yielded very high detection accuracy [22]. For the identification of
various protocol-based botnet attacks in IoT networks, an ensemble technique has been found
that combines the three machine learning algorithms decision tree, Naive Bayes, and artificial
neural network [23]. Another ensembled strategy suggested in [24] combines a random forest
and an average one-dependence estimator that focuses on eliminating attribute dependencies
in order to increase detection accuracy while simultaneously lowering the number of false
alarms. This made it possible for the incremental learning process and allowed the relevant
features for categorization to be captured. With the REPTree, the ensembled technique used
with the NSL-KDD data [25] also attempted to lower the frequency of false alarms. The
ensembled approach used here is bagging, which requires less time for model building. On top
of that, several investigations are conducted employing the fundamental machine learning
techniques. The parameters used to gauge the overall performance of the IDS have been the
main source of complaints for most machine learning techniques. It was necessary to create
appropriate metrics like scalability and throughput to confirm the performance of the IDS in a

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 759

very big network because measurements like accuracy, recall, and f1 score were insufficient
to determine the performance of an IDS in such a huge network. Additionally, the majority of
machine learning algorithms contributed to the overfitting issue, leading to the employment of
more intricate modelling and deep learning techniques in the development of effective
intrusion detection systems.

Due to their improved performance with bigger dimensions, deep learning techniques have
become more and more popular. The identification of attacks in IoT-IDS uses supervised,
unsupervised, and hybrid deep learning methods. Deep neural network (DNN), convolutional
neural network (CNN), and recurrent neural network (RNN) methods are frequently used in
supervised settings [26–31]. The methods employed in [26-32] are all direct implementations
of supervised learning algorithms; hence, they are not separately explained. Nevertheless, they
are all utilized to execute botnet classifications for IoT networks or protocol-based attacks.
Deep belief networks, autoencoders, and restricted Boltzmann machines are employed when
the unsupervised learning technique is taken into consideration. The performance of the
supervised learning setup is enhanced in the work [32] by the introduction of autoencoders.
The goal is to train the autoencoders to learn the latent representation of the input data by
regularizing them. Today, achieving a scalable IoT-IDS is essential, and this is done utilizing
the deep learning method described in [33], where a master-slave network is used to spread
the computations to the fog nodes. Two types of representation—local and global—are
identified because of the master-slave connection and are learned utilizing the local gated
recurrent unit (Local GRU) and multi-head attention mechanism. According to the findings,
this strategy is ideally suited to manage the high volume of traffic in IoT-IDS.

Employing hybrid techniques to achieve reduced latency using generative adversarial
networks (GAN) is suggested in [11]. In this instance, a specialized GAN dubbed FID-GAN
is utilized, which seeks to give computation resources on the fog and internally exploits the
idea of federated learning. An encoder was also employed to hasten the loss. A memory
remembering technique LSTM for handling the IoT traffic data is suggested in [34]. It is not
a new concept to use evolutionary algorithms in intrusion detection systems, and there is a
substantial body of research addressing algorithms like Genetic Algorithm (GA), Ant Colony
Optimization (ACO), Particle Swarm Optimization (PSO), Artificial Bee Colony Optimization
(ABC), Firefly Algorithm (FA), Bat Algorithm (BA), and Flower Pollination Algorithm (FPA).
However, the majority of work using evolutionary algorithms aims to collect a minimal set of
features to improve the model's classification accuracy. The best characteristics are chosen for
the classification task using a method called multi-objective particle swarm optimization with
a Levy flight randomization component (MOPSO-Lévy), which is suggested in [35]. The K-
nearest neighbors (KNN) algorithm is the classifier employed here. The combined CNN +
LSTM architecture proposed in [48] holds the highest detection accuracy of 99.84% for binary
and 99.80% for multi-class classification while using the X-IIoTID dataset.

For the best feature set, similar techniques are utilized in [38]. In order to improve
classification accuracy for the intrusion detection system, the idea of applying evolutionary
techniques is therefore heavily utilized in the feature selection process. Some of the work
related to this is proposed in [36,37]. The data imbalance is addressed using the SMOTE
technique in [49] so that synthetic data are generated for balancing the attacks.

2.2. State of the art for Auto Parameter Tuning
The idea of employing evolutionary algorithms to optimize the models is still in its infancy.
[36] proposes a novel approach to employing the evolutionary algorithm to evolve the
classifier. The CNN is a classifier that was developed using an evolutionary approach. This

760 Alexander. R et al.: Genetic Algorithm based hyperparameter
tuned CNN for identifying IoT intrusions

concept is an expansion of the one put forth in [37], which suggests a technique called
CoDeepNEAT for creating optimized neural networks. An algorithmic approach for
performing hyperparameter tuning is proposed in [50], where the arithmetic optimization
algorithm is enhanced to improve the candidate solution's performance. The AutoML
technique is used along with the ensembled strategy for the ideal selection of hyperparameters
for the supervised setup using the voting mechanism proposed in [51]. Though these
approaches propose a strategy for hyperparameter tuning, their major limitation is their
inability to handle varied forms and volumes of data, which makes them require human
assistance at some stage.

So, this paper suggests an Extended Compact Genetic Algorithm deep neural network to
develop the IoT-IDS, similar to the strategy used in [36], where the DNN hyperparameters are
updated to a chromosome that takes the Bayesian framework for optimization into account.
The measures that identify the linkage learning process are the model's complexity and
performance. With the linkage learning process, a higher number of parameters results in a
better detection value, which is desirable; nevertheless, a lesser number of parameters in DNN
has an effect on performance. The objective is to optimize these metrics so that the parameters
and detection rate of the ideal DNN setup are improved. A special fusion of genetic and
probabilistic methods, probabilistic model-building genetic algorithms are used for this
optimization. In order to provide improved latency, we then supply the fog environment with
a set of DNN with the ideal parameters.

3 The Proposed Methodology
Since this methodology combines several techniques to produce a neural network with the best
hyperparameters, it is presented here along with all the parts used to construct such a system.
The expanded compact genetic algorithm and the CNN's evolution plan are given after the
general structure of the feature-map-based CNN is described. A generic architecture is also
described because the proposed method's latency reduction needs to be confirmed in the fog
network.

3.1 Feature-Map exploitation-based CNN
Understanding the CNN's overall architecture is essential for choosing the optimum
hyperparameter and realizing the necessity of a CNN based on feature-map exploitation. Let's
thus examine the fundamental design of CNN as well as the justifications for selecting feature-
map-exploitation-based CNN for the encoding process. In the area of computer vision, the
convolutional neural network (CNN) left a notable impression. Yann Lecun made the initial
suggestion, and it was given the name LeNet [39]. The main idea behind CNN is the
integration of feature extraction and classification, which makes it appropriate for both text
classification and vision issues. Fig. 1, shows the general architecture of CNN.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 761

Fig. 1. General Architecture of CNN.

The convolutional neural network (CNN) is made up of three basic components, as

illustrated in Fig. 1, an input layer, a hidden layer that contains the convolution and pooling
layers, and the classification layer, which is often a fully connected layer.

Input Layer: Data's feature vector is transferred to the input layer. The input layer often
receives input in the form of pictures. The CIC-IDS data is transformed into an image and
provided as an input to CNN, as indicated in [40].

Convolutional Layer: The significant features of the input data must be filtered out by this
layer. This is accomplished with the kernel's assistance. The set of learnable parameters is
represented by the kernel. Convolution simply refers to a linear operation that is the dot
product of the kernel and the input's bounding region. To create a feature map, the kernel is
multiplexed in accordance with the stride value. As a result, the dimension of the feature map
produced by the convolution process is decreased. The number of convolution layers in a CNN
is also flexible, as is the kernel size. In terms of restricted interaction, which lowers the
computation's memory demand, parameter sharing, and changes in the input directly affecting
the output, this configuration of CNN's convolutional layer makes it superior.

Pooling Layer: Similar to convolution, the pooling layer is in charge of lowering the
computing cost by bringing down the input's dimensions. The input will therefore have
reduced dimensions when it enters the pooling layer after passing through the convolutional
layer; this layer then either does maximum pooling or average pooling. The ability of
maximum pooling to prevent total noise activations as well as the fact that it goes through
dimensionality reduction for noise removal make it a popular choice.

Fully Connected Layer: This is referred to as the "classification layer," which ideally seeks
to construct a non-linear function to determine the relationship between the input features and
the output class. This non-linear function is chosen for the learning process based on the
categorization type. After the input has been flattened, it is supplied into the feed-forward
network, which is made up of several neurons and does backpropagation. After going through
several epochs, the learning significantly rises.

The number of distinctive qualities that aid in the identification of attacks needs to be given
more focus in our work. So, a modified version of CNN is utilized, one that can automatically
extract features and learns them in a hierarchical fashion. In order to comprehend the
contribution of a particular input to the convolutional layer, a feature map visualization is
performed. The procedures used to identify the traits that help identify classes are described
in Algorithm 1.

762 Alexander. R et al.: Genetic Algorithm based hyperparameter
tuned CNN for identifying IoT intrusions

Algorithm 1: Feature Map Exploitation
• Input: Image
• Output: Feature Maps
• Define a visualization model

o For every feature in an image
 Do

• Conversion of image to an array
• Perform the Normalization operation by doing rescaling for the array

 Iterate
 Plot the convolutional and pooling layer

o End for

The most dominating elements that facilitate categorization are found through the

development of the visualization model for the feature maps. Additionally, creating a model
with more characteristics can cause the network to be overfit. As a result, feature selection is
essential for solving accurate classification problems, and feature map exploitation-based
CNN is used to do this.

Another important thing to be considered for our work is the idea of hyperparameters
because this entire work concentrates on auto setting of the hyperparameters so as to obtain an
optimal neural network automatically. Some of the hyperparameters that aids in the learning
process of the model are as follows:

Learning Rule: As the name suggests, we outline the reasoning behind how the neural
network should process data. Learning takes place iteratively in a neural network with
continuously updated weights and biases and a prescribed mathematical logic. Hebbian,
Perceptron, Delta, Correlation, and Outstar are a few of the well-known learning rules.

Batch Size: The quantity of samples chosen for training in a single iteration is referred to
as the batch size. In order for the model to learn and optimize as rapidly as possible, picking
the appropriate batch size is important. Again, there is no hard and fast rule for selecting the
batch size, and we typically find the best batch size by trial and error.

Dropout Rate: This hyperparameter, as its name suggests, specifies the likelihood that a
node should be dropped. Given that it avoids the overfitting issue, this is a crucial part of neural
network training. A whole new neural configuration is created from the parent network by
defining the dropout probability.

Activation Function: There should be a system that determines whether a specific input
node is important for training or not since it is crucial for the neural network to learn just the
relevant input throughout the learning process. The "activation function" is a mathematical
notation used to make this determination that transforms the input. The activation function's
purpose is to enable a node to get the output for a set of input values.

Learning rate: The "learning rate" refers to how frequently the weights of the neural
network are updated. The weights are updated significantly if a higher learning rate is selected.

A neural arrangement can be described with hundreds of additional hyperparameters, such
as mini-batch, in addition to the ones just mentioned. However, the most popular
hyperparameters that, when improved, can considerably boost the network's performance are
covered. Despite the fact that these rules are frequently created by hand, in our study we put
the emphasis on allowing our feature-map exploitation-based CNN to evolve and then let it
choose the type of optimum learning rule, rate, dropout rate, etc. Suppose if the input is defined
by the weight(W), height (H) and the number of channels(C), the output is obtained with the
filter(F) and stride(S). Thus, the output feature is obtained using the Equation (1) is

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 763

 �𝑊𝑊−𝐹𝐹
𝑆𝑆+1

� × �𝐻𝐻−𝐹𝐹
𝑆𝑆+1

� × 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (1)

3.2 Evolutionary Strategy- Motivation
When examining the CNN feature map's structure, it becomes evident that selecting the
appropriate amount of convolution layers, pooling layers, and fully linked layers was
challenging. It is also a laborious effort to select the appropriate hyperparameter values for the
feature-map exploitation-based CNN unless there is prior experience working with a variety
of use cases. There are several justifications for why we must choose the ideal hyperparameter
value. Detection accuracy is improved by a deep neural network's capacity for learning.
However, as it is deepened more, it typically overfits the data, which will directly affect the
training time and processing resources.

Two essential components of the IoT-IDS are increased compute power and accurate
detection. Since the values of the hyperparameters have a significant impact on the
computation resource and detection accuracy, this needs to be automatically configured to
optimal so that, when it is deployed in a fog environment, it can create a lower latency. This
is the primary driver behind the CNN-based feature-map exploitation conversion to a
chromosome.

The process of building the evolution model follows an encoding procedure in which all
the components of the neural network have to be converted in such a way to be converted as a
chromosome. Since our problem involves the usage of real numbers, we perform a value
encoding to decide on the number of genes in our chromosome. Fig. 2, shows the gene details
of the chromosome.

Fig. 2. Structure of the Genes in the Chromosome

The probabilistic model genetic algorithm's overall chromosome structure thus consists of

13 genes and the concept of evolving the CNN model to the chromosome is borrowed from
this work [36]. No significant changes have been made because the goal of our research was
to adapt the evolutionary algorithm to deal with large-scale, multidimensional data in the IoT
environment by using the Bayesian approach. The gene structure thus resembles the one
described in [36], with the addition of the feature map CNN being the only variation made at
this level. The simplified notations and real value encoding used for the evolution process are
displayed in Table 1. Our dataset contains multiclass scenarios, hence a SoftMax function was
used as the activation function.

764 Alexander. R et al.: Genetic Algorithm based hyperparameter
tuned CNN for identifying IoT intrusions

Table 1. Gene Encoded values [36]
Genes of the Chromosome Encoded Values Notation

Convolution layers 1,2,3 ConL

Kernel number 2,4,8,16,32,64,128,256 KN

Kernel size 2,3,4,5,6,7,8,9 Ksize

Pooling layer number 0- No pooling, 1- Pooling PDecide

Pooling layer size 2,3,4,5,6,7,8,9 Psize

Number of Neurons 8,16.32,64,128,256,512,1024 Nnumber

No. fully connected layers 3 Fconnected

Dropout Rate 0,0.25,0.5 Drate

Learning Rule Adam, Adamax Lrule

Batch Size 32,64,128,256 Bsize

Learning Rate 0.1,0.01,0.001,0.0001 Lrate

Accuracy Needs to be Optimized
Parameter Needs to be Optimized

3.3 Probabilistic Model Building Genetic Algorithm-Extended Compact Genetic
Algorithm(eCGA)
Having defined the gene's initial population and the objective function that needs to be
optimized, it is very clear that our objectives are multifunctional. As a result, it is critical to
optimize the feature map CNN for multiple objectives. It is also known that when the model
complexity increases, there is a possibility of a decrease in detection accuracy because of the
vanishing gradient or the overfitting issue, whereas a decrease in model complexity increases
detection accuracy. So, these two conflicting objective functions need to be defined as an
objective function that can be handled by the genetic algorithm. There are only two approaches
available to do this:

1. The value of each objective function can be calculated by combining all the objective
functions into one and using a weighted summation.

2. The best answer is chosen from a set of optimal solutions using a meta-heuristic
technique.

Since most of the meta heuristic approaches uses the evolutionary algorithms, the second
technique is used for optimizing both the objective functions simultaneously. In particular, the
approach used here is similar to the VEGA [41]. Algorithm 2 explains the genetic algorithm
approach for optimizing the multi objective problem. The procedure adopted here is the entire
population is made as two and two solutions are obtained. For every solution, depending on
the objective function value a fitness value is given. Based on these values, the best solutions
are then chosen for the cross over and mutation.

Algorithm 2: Multi-objective feature Map based CNN procedure
Input:

o N: Population {P1, P2, P3, P4, P5 ………… PN}

o K: Subpopulation (N/K) {P1, P2, P3, P4, P5 ………… PK} {P1, P2, P3, P4, P5 ………… PK}
o Z: Fitness Value

Output:
o Initial population is populated randomly P4 and the iteration is at i=0

 if (P4 = stopping condition)
• random sort (population)

o for all the solutions in K: Subpopulation

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 765

 for i= 1+(K-1) PK …………K PK
• set fitness value
• Based on fitness
• Select K solution for all the subpopulation
• Perform crossover and mutation for subpopulation

 i=i+1
 end for

o else
 continue

o end for
o end

The next step is to optimize the given genetic algorithm using CNN after establishing a

multi-objective optimization function as a genetic algorithm. The extended genetic compact
algorithm (eCGA), which is combined with this multi-objective function conversion, is then
used to optimize the neural network. The choice of eCGA is made in this work because the
encoding of eCGA is using the Bayesian network, and if the traditional eCGA, which uses
probabilistic polling for subset generation, is modified to be deterministic, the computation
resources will be reduced and it can process faster.
Now that these theoretical facts have been taken into account, Algorithm 3 describes how to
use the eCGA to produce the best feature map for the CNN. Because linkage learning occurs
by selecting a better probability distribution, this algorithm is capable of both evolutionary and
probabilistic optimization. The value that indicates a good distribution in this situation is the
minimal description length. Even higher-order relationships can be simulated with eCGA
because it is based on multivariate factorizations. With the help of the model complexity and
the compressed population complexity, this technique achieves linkage learning, a method for
identifying the major dependencies between the variables that make up the problem. For a
cluster that is first initialized randomly, it assumes that all are equal and seeks to obtain an
optimal probability distribution that minimizes the probability model and population. A good
distribution has the smallest description length. Marginal distributions combine to generate the
marginal product model known as eGCA.

Algorithm 3: Extended Genetic Compact Algorithm(eCGA) based CNN (eCGA-CNN)

Input:
o N<-Number of Population {P1, P2, P3, P4, P5 ………… PN}

o T<-Neighbourhood Size

o Hmax <- Maximum generation

o Weight vectors with uniform spread N {w1, w2, w3, w4……………… wt }

o Training and Testing set
Output:

o The final Population P
o Identify the neighbourhood value of T for all subproblems (Algorithm 1)
o Generate the population
o For each individual in the population build a feature-map CNN

 Initialize the clusters randomly
 Nelder Mead Simplex search
 Compute energy of each cluster

o if (cluster = converged)
 end

o else
 Build minimum description model

766 Alexander. R et al.: Genetic Algorithm based hyperparameter
tuned CNN for identifying IoT intrusions

 Create new cluster
o Iterate
o for i = 1 to Hmax do

 for j= 1 to N do
• Reproduction: select random values from the cluster and get the

new solution
• Evaluate CNN
• Update old cluster with new cluster

 End for
o End for
o End for

Fig. 3. System Model of eCGA based CNN

The overall system diagram including the training phase and evolutionary phase is

showcased in Fig. 3. The general steps in this process include one hot encoding preprocessing,
selecting the best features for the model, and feeding the training and testing sets to the CNN
to create genes with the ability to automatically tune the hyperparameters using the eCGA
algorithm.

3.4 Achieving Low latency in Fog Environment
A low latency detection service is also being worked on as part of the development of an IoT-
IDS, in addition to increasing detection accuracy. In a typical network intrusion detection
system, the IDS is often used on a potent server where the computational power and resources
are immense. But since the devices and their computing capability are so varied in an IoT
context, this is useless. According to IDC, the majority of data handled globally will be
processed in a fog environment, necessitating the use of a security detective mechanism in a
fog environment. This is important since low latency is guaranteed by fog computing, which
means our suggested IoT-IDS will likewise operate with low latency.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 767

As a result of the suggested linkage learning model's high computing requirements, the

entire model training procedure cannot be implemented in a fog environment. The main
problem is that it could require a lot of training time, which prevents it from meeting the low
latency criteria. A cloud server might be utilized to conduct the training process. After that,
the learned models are applied to fog devices that can provide real-time detection services with
minimal latency.

Fig. 4. Incorporation of the proposed hyperparameter tuned model into the Fog Network

Fig. 4, shows the way the fog network uses the trained model for detecting intrusive

behavior. As illustrated in the figure, traffic generated by various IoT devices and received in
the fog network is handled by multiple subcomponents to determine the traffic's location. The
proposed methodology is specifically deployed inside the detection module, where the regular
IDS runs and takes care of the classification of the traffic.

4. Experimental configuration
This section gives a quick overview of the technology and setting that were used for the studies.
The datasets utilized in the trials are then supplied, along with instructions for pre-processing
them. In order to assess the performance of the proposed system, various performance
measures are finally introduced.

4.1 Experimental Setup
With help from Keras, Tensorflow, PyGAD, Numpy, and Pandas, the methodology is
implemented using the Python 3.11.2 programming environment. The Ubuntu operating
system and AMD Ryzen 5000 Series 7 hardware were used to conduct this experiment. The
Windows 10 operating system, an Intel Core i5 CPU, 4GB of RAM, and the iFogSim tools are
used to virtualize the fog node.

4.2 Dataset Description
Though there is a wide variety of intrusion datasets are available for the public, to carry out
this work specific two variations of the IoT-IDS dataset CIC-IDS2017 and CIC-IDS2018
dataset. The Canadian Institute for Cybersecurity dataset 2017 and 2018 is chosen because of
its closeness towards the real IoT traffic data. This dataset is built using the five days normal
and attack patterns observed in the Canadian institute of Cybersecurity. The features present
in this dataset is 78 and the overall distribution of this dataset is shown in Fig. 5, along with
the percentage of each attack is presented in Fig. 6, 7, 8, and 9.

768 Alexander. R et al.: Genetic Algorithm based hyperparameter
tuned CNN for identifying IoT intrusions

Fig. 5. Class Distribution plot for the CIC-IDS 2017 Dataset showing the number of instances for

each class.

Fig. 6. Distribution percentage of the major

class labels Benign and Attack
Fig. 7. Number of attacks in each of

the attack class

Fig. 8. Group of Attacks that are holding the

highest number of attack instances
Fig. 9. Group of Attacks that are holding the

smallest number of attack instances

More classes are included in the CIC-IDS 2018 dataset, which is organized daily. Data
from event logs and network traffic are collected every day. This has 80 features, and Fig. 10,
depicts the class distribution map of the same.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 769

Fig. 10. Class Distribution plot for the CIC-IDS 2018 Dataset

Table 2, includes the same information in tabular style along with the number of each

traffic source and its percentage. These simulated datasets were chosen because of their
authenticity; even though the dataset demonstrates class imbalance, it can be useful to do a
meta-analysis using them. Also, they are more similar to actual IoT traffic statistics.

Table 2. Multi Class Label count values and the percentage of distribution
Class Label Percentage

Benign 13390249 0.829776
DDOS attack-HOIC 686012 0.042511

DDoS attacks-LOIC-HTTP 576191 0.035706
DoS attacks-Hulk 461912 0.028624

Bot 286191 0.017735
FTP-BruteForce 193354 0.011982
SSH-Bruteforce 187589 0.011625

Infilteration 160639 0.009955
DoS attacks-SlowHTTPTest 139890 0.008669

DoS attacks-GoldenEye 41508 0.002572
DoS attacks-Slowloris 10990 0.000681

DDOS attack-LOIC-UDP 1730 0.000107
Brute Force-Web 611 0.000038
Brute Force-XSS 230 0.000014

SQL Injection 87 0.000005

4.3 Dataset Pre-processing
In terms of data preparation, only the most elementary pre-processing removing null values
and non-numeric characters is carried out for the two datasets. 2867 records from the CIC IDS
2017 dataset were found to be useless and removed. Also, according to [42], there were 15
classes present that were reduced to 7 classes. The infinite values in the CSECICIDS2018
dataset were all converted to null values. Large correlations between a number of features were
also present in the IDS2018 dataset; the feature map CNN will feature engineer these features.
Some of the strongly associated traits are displayed in Table 3. Fig. 11, shows the feature map
retrieved features.

This job is performed in a neural network; hence it is necessary to convert the categorical
form to a numeric representation. Hence, the conversion only uses one hot encoding. Then
both the datasets are split into 60:20:20 for training, testing, and validation.

770 Alexander. R et al.: Genetic Algorithm based hyperparameter
tuned CNN for identifying IoT intrusions

Table 3. Strong Correlated features requiring feature map reduction
 Variable_1 Variable_2 Correlation

0 tot_fwd_pkts subflow_fwd_pkts 1.000000
1 fwd_psh_flags syn_flag_cnt 1.000000
2 totlen_fwd_pkts subflow_fwd_byts 1.000000
3 fwd_pkt_len_mean fwd_seg_size_avg 1.000000
4 tot_bwd_pkts subflow_bwd_pkts 1.000000
5 fwd_urg_flags cwe_flag_count 1.000000
6 bwd_pkt_len_mean bwd_seg_size_avg 1.000000
7 totlen_bwd_pkts subflow_bwd_byts 1.000000
8 flow_iat_min fwd_iat_min 0.999996
9 flow_iat_max fwd_iat_max 0.999994
10 rst_flag_cnt ece_flag_cnt 0.999988
11 flow_duration fwd_iat_tot 0.999986
12 flow_iat_std fwd_iat_std 0.999981
13 flow_iat_mean fwd_iat_mean 0.999963
14 subflow_fwd_pkts fwd_act_data_pkts 0.999189
15 tot_fwd_pkts fwd_act_data_pkts 0.999189
16 bwd_header_len subflow_bwd_pkts 0.997798
17 tot_bwd_pkts bwd_header_len 0.997798

Fig. 11. Feature Map extracted features

5. Result Analysis
The results are used to analyze the proposed system in two different ways.

• To demonstrate the suggested system's superiority over other deep learning methods
in terms of detection accuracy.

• Some of the best-evolved model performances can be found when objective values
are included and when the performance of the model changes as the hyperparameters
evolve.

Some of the quantifiable values are displayed in this section to demonstrate how well the
suggested model works.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 771

5.1 Population Analysis
This population study is done to highlight the subset of present generational solutions. It is
crucial to comprehend how evenly the individuals were dispersed throughout the first
generation and in the last generation in order to say that the proposed methodology succeeded
successfully. The fact that the individuals should be evenly dispersed suggests there hasn't
been any premature convergence The CIC-IDS-2017 and 2018 beginning and final generation
populations are plotted for the multiclass problem taking this into account. The results are
given in Fig. 12 and 13. As observed in Fig. 12 and 13, the initial population shows the
distribution irregularly exhibiting a high detection error rate. This value is significantly
decreased in the final generation. A similar type of distribution is observed for the CIC-IDS-
2018 data as well.

Fig. 12. Distribution of Individuals in the initial and final generation CIC-IDS-2017 and 2018

Fig. 13. Distribution of Individuals in the initial and final generation CIC-IDS-2018

The number of parameters and error rate have increased since the distribution is noticeably

greater. The extreme values for both datasets are displayed in Table 4, for a quantitative
examination.

772 Alexander. R et al.: Genetic Algorithm based hyperparameter
tuned CNN for identifying IoT intrusions

Table 4. Quantitative values for extreme cases
Dataset Factors Initial Generation Final Generation

CIC-IDS-2017
Number of Parameters

parameters Error rate Parameters Error rate
1320 16.21 1520 0.38

Error rate (Minimum) 58,525 0.15 21,534 0.01
Average 1,09,785 8.32 15,343 3.21

CIC-IDS-2018 Number of Parameters 1682 14.21 289 11.26
Error rate (Minimum) 78,352 0.11 1072 0.24

Average 99,875 7.23 882 4.98

As shown in Table 4, the final generation error rate and the number of parameters is

significantly lower that shows with the proposed approach the detection performance and the
complexity are greatly increased. The average number of parameters at both the initial and
final generation shows a decreased error rate when the number of parameters is significantly
reduced. The point that needs to be noted here is the effect of the number of parameters on the
detection accuracy. Fig. 14, shows the distribution plot of the error.

Fig. 14. Distribution plot for the error generated without genetic algorithm and with genetic algorithm

From Fig. 14, it is clear that the error rate is significantly lower at the final generation of

parameters. The grey line indicating the final generation parameters is lower than that of the
blue line that is showing the initial generation parameters and the similar results are observed
for the final generation error rate as well. This visualization is done based on the values that
we have obtained from Table 4.

Fig. 15. Confusion Matrix of the CIC-IDS-2017

dataset
Fig. 16. Confusion Matrix of the CIC-IDS-2018

dataset

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 773

The confusion matrix for the best-performed individual is shown in Fig. 15, 16 and Table
5, 6 for CIC IDS 2017 and 2018 data. The detection accuracy outperformed in both the dataset
with a value above 99%.

Table 5. Quantitative values for best performed case in CIC IDS2017
 precision recall f1-score support

0 1.00 0.99 0.99 3645
1 0.99 1.00 0.99 393
2 1.00 1.00 1.00 19
3 0.99 1.00 1.00 609
4 0.42 0.71 0.53 7
5 0.98 1.00 0.99 251
6 0.98 0.99 0.98 436

accuracy 0.99 5360
macro avg 0.91 0.96 0.93 5360
weighted avg 0.99 0.99 0.99 5360

Table 6. Quantitative values for best performed case in CIC IDS2018
 precision recall f1-score support

0 1.00 0.99 1.00 3645
1 0.99 1.00 0.99 393
2 1.00 1.00 1.00 19
3 1.00 1.00 1.00 609
4 0.45 0.71 0.56 7
5 0.98 1.00 0.99 251
6 0.99 0.98 0.98 436

accuracy 0.99 5360
macro avg 0.92 0.95 0.93 5360
weighted avg 0.99 0.99 0.99 5360

5.2 Meta-Analysis
To show the superiority of the proposed system to that of the other deep learning approaches
that used manual hyperparameter tuning is compared along the detection accuracy values.
Table 7, makes it abundantly evident that the proposed methodology outperformed in terms
of optimization as well as detection accuracy, with noteworthy outcomes.

Table 7. State-of-the-art comparative analysis with detection accuracy for CIC-IDS-2017

Method Accuracy Precision Recall F1
GRU [43] 98.53 77.59 74.23 75.66

LSTM [44] 98.89 89.22 74.79 77.05
AE-ANN [45] 98.13 54.20 53.31 54.74

SDAE-SVM [46] 95.38 52.01 44.43 45.25
SAE-DNN [47] 97.66 68.85 59.96 60.65

Proposed 99.24 99.24 99.24 99.23

5.3 Latency Analysis
The pretrained eCGA-based model must be able to execute in the fog node for the claim of
lower latency to be valid, and the amount of time it takes to react to attacks must also be
confirmed. These fog nodes are simulated using the iFogSim simulation environment, and the
pretrained models are made to operate in those nodes, in order to test this. The CPU and

774 Alexander. R et al.: Genetic Algorithm based hyperparameter
tuned CNN for identifying IoT intrusions

memory consumption for the fog node when these nodes attempted to do this ranged from 10%
to 20%, demonstrating the fog nodes' ability to support this methodology, which will result in
lower latency. Fig. 17 and 18, shows the comparison of latency for cloud and fog nodes.

Fig. 17. Latency analysis for the Fog environment

in terms of the QoS parameters
Fig. 18. Latency analysis for the Cloud

environment in terms of the QoS parameters

Thus, with the plotting of the population at the initial and final stages of population denotes

a substantial reduction in the error rate and this clearly showed the relationship between the
number of parameters and the error. With the reduction in error, the detection accuracy is
improved and that is compared to the state-of-the-art for its superiority and the latency analysis
exhibits the suitability of this approach at the fog node.

6. Conclusion
The method proposed in this study better automates the hyperparameter selection by utilizing
the CNN feature map and an enhanced genetic compact algorithm. For executing the
categorization of IoT-IDS network traffic, the genetic algorithm is used to achieve the goal of
obtaining a superior neural network with automatic adjustments. IoT traffic is categorized
using the feature map CNN, which is subsequently encoded as a chromosome for
hyperparameter tweaking. With the CIC-IDS 2017 and 2018 datasets, a greater detection
capacity is attained with this arrangement. For improved solution selection, the fitness value
derived from the objective functions is used. The best performers within the population are
selected to provide quantitative values for detection accuracy. By the results, we were able to
show that the suggested procedure is effective at identifying the optimal choice. In terms of
result analysis, the error rate is lower following population analysis, the latency is confirmed
by contrasting the cloud and fog settings, and in terms of response time, it is clear that the fog
requires less time than the cloud.

Despite the automated hyperparameter adjustment capabilities of the proposed model, this
system is evaluated on balanced data due to sample availability. These model parameters
tuning findings must be confirmed on a significantly unbalanced dataset, though. Adversarial
synthetic data production is required to include the data's imbalance. The next goal of this
study is to verify the integration of Jacobian saliency approaches with SMOTE and GAN
networks to produce adversarial samples instantaneously and create such a massive amount of
diverse data.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 775

References
[1] Khan. R, Khan. S.U, Zaheer. R, and Khan. S, “Future internet: the internet of things architecture,

possible applications and key challenges,” in Proc. of 2012 10th international conference on
frontiers of information technology, pp. 257-260, Dec. 2012. Article (CrossRef Link)

[2] Perera. C and Vasilakos. A.V, “A knowledge-based resource discovery for Internet of
Things,” Knowledge-Based Systems, 109, pp. 122-136, 2016. Article (CrossRef Link)

[3] Al-Fuqaha. A, Guizani. M, Mohammadi. M, Aledhari. M, and Ayyash. M, “Internet of things: A
survey on enabling technologies, protocols, and applications,” IEEE communications surveys &
tutorials, 17(4), pp. 2347-2376, 2015. Article (CrossRef Link)

[4] Mid-Year Update: SonicWall Cyber Threat Report, 2022. [Online]. Available:
https://www.sonicwall.com/resources/white-papers/mid-year-2022-sonicwall-cyber-threat-
report/

[5] Forestiero. A, "Metaheuristic algorithm for anomaly detection in Internet of Things leveraging on
a neural-driven multiagent system," Knowledge-Based Systems, 228, p. 107241, 2021.
Article (CrossRef Link)

[6] Hassan. M, Huda. S, Sharmeen. S, Abawajy. J, and Fortino. G, “An adaptive trust boundary
protection for IIoT networks using deep-learning feature-extraction-based semisupervised
model,” IEEE Transactions on Industrial Informatics, 17(4), pp. 2860-2870, 2021.
Article (CrossRef Link)

[7] Vijayakumar. D.S and Ganapathy. S, “Machine Learning Approach to Combat False Alarms in
Wireless Intrusion Detection System,” Comput. Inf. Sci., 11(3), pp. 67-81, 2018.
Article (CrossRef Link)

[8] Hindy. H, Bayne. E, Bures. M, Atkinson. R, Tachtatzis. C, and Bellekens. X, “Machine learning
based IoT intrusion detection system: An MQTT case study (MQTT-IoT-IDS2020 dataset),” in
Proc. of 12th International Networking Conference: INC, pp. 73-84, 2021. Article (CrossRef Link)

[9] Al-Omari. M, Rawashdeh. M, Qutaishat. F, Alshira’H. M, and Ababneh. N, “An intelligent tree-
based intrusion detection model for cyber security,” Journal of Network and Systems
Management, 29, pp. 1-18, 2021. Article (CrossRef Link)

[10] Vijayakumar. D.S and Ganapathy. S, “Multistage ensembled classifier for wireless intrusion
detection system,” Wireless Personal Communications, 122(1), pp. 645-668, 2022.
Article (CrossRef Link)

[11] de Araujo-Filho. P.F, Kaddoum. G, Campelo. D.R, Santos. A.G, Macêdo. D, and Zanchettin. C,
“Intrusion detection for cyber–physical systems using generative adversarial networks in fog
environment,” IEEE Internet of Things Journal, 8(8), pp. 6247-6256, 2021.
Article (CrossRef Link)

[12] Chen. Y, Ashizawa. N, Yeo. C.K, Yanai. N, and Yean. S, “Multi-scale self-organizing map
assisted deep autoencoding Gaussian mixture model for unsupervised intrusion
detection,” Knowledge-Based Systems, 224, pp. 107086, 2021. Article (CrossRef Link)

[13] Ravi. N and Shalinie. S.M, “Semisupervised-learning-based security to detect and mitigate
intrusions in IoT network,” IEEE Internet of Things Journal, 7(11), pp. 11041-11052, 2020.
Article (CrossRef Link)

[14] Suganuma. M, Shirakawa. S, and Nagao. T, “A genetic programming approach to designing
convolutional neural network architectures,” in Proc. of the genetic and evolutionary computation
conference, pp. 497-504, 2017. Article (CrossRef Link)

[15] Stanley. K.O and Miikkulainen. R, “Evolving neural networks through augmenting
topologies,” Evolutionary computation, 10(2), pp. 99-127, 2002. Article (CrossRef Link)

[16] Yao. X and Liu. Y, “A new evolutionary system for evolving artificial neural networks,” IEEE
transactions on neural networks, 8(3), pp. 694-713, 1997. Article (CrossRef Link)

[17] Angeline. P.J, Saunders. G.M, and Pollack. J.B, “An evolutionary algorithm that constructs
recurrent neural networks,” IEEE transactions on Neural Networks, 5(1), pp. 54-65, 1994.
 Article (CrossRef Link)

https://doi.org/10.1109/FIT.2012.53
https://doi.org/10.1016/j.knosys.2016.06.030
https://doi.org/10.1109/COMST.2015.2444095
https://www.sonicwall.com/medialibrary/en/white-paper/mid-year-2022-cyber-threat-report.pdf
https://www.sonicwall.com/resources/white-papers/mid-year-2022-sonicwall-cyber-threat-report/
https://www.sonicwall.com/resources/white-papers/mid-year-2022-sonicwall-cyber-threat-report/
https://doi.org/10.1016/j.knosys.2021.107241
https://doi.org/10.1109/TII.2020.3015026
https://doi.org/10.5539/cis.v11n3p67
https://link.springer.com/chapter/10.1007/978-3-030-64758-2_6
https://doi.org/10.1007/s10922-021-09591-y
https://doi.org/10.1007/s11277-021-08917-y
https://doi.org/10.1109/JIOT.2020.3024800
https://doi.org/10.1016/j.knosys.2021.107086
https://doi.org/10.1109/JIOT.2020.2993410
https://doi.org/10.1145/3071178.3071229
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1109/72.572107
https://doi.org/10.1109/72.265960

776 Alexander. R et al.: Genetic Algorithm based hyperparameter
tuned CNN for identifying IoT intrusions

[18] Miikkulainen. R, Liang. J, Meyerson. E, Rawal. A, Fink. D, Francon. O, Raju. B, Shahrzad. H,
Navruzyan. A, Duffy. N, and Hodjat. B, “Evolving deep neural networks,” in Artificial
intelligence in the age of neural networks and brain computing, Academic Press, 2019, pp. 293-
312. Article (CrossRef Link)

[19] Nayak. J, Naik. B, Dash. P.B, Vimal. S, and Kadry. S, “Hybrid Bayesian optimization hyper tuned
catboost approach for malicious access and anomaly detection in IoT nomaly
framework,” Sustainable Computing: Informatics and Systems, 36, p. 100805, 2022.
Article (CrossRef Link)

[20] Masum. M, Shahriar. H, Haddad. H, Faruk. M.J.H, Valero. M, Khan. M.A, Rahman. M.A, Adnan.
M.I, Cuzzocrea. A, and Wu. F, “Bayesian hyperparameter optimization for deep neural network-
based network intrusion detection,” in Proc. of 2021 IEEE International Conference on Big Data,
pp. 5413-5419, Dec. 2021. Article (CrossRef Link)

[21] Sharafaldin. I, Lashkari. A.H, and Ghorbani. A.A, “Toward generating a new intrusion detection
dataset and intrusion traffic characterization,” in Proc. of ICISSp, 1, pp. 108-116, 2018.
Article (CrossRef Link)

[22] Ren. Y, Zhang. L, and Suganthan. P.N, “Ensemble classification and regression-recent
developments, applications and future directions,” IEEE Computational intelligence
magazine, 11(1), pp. 41-53, 2016. Article (CrossRef Link)

[23] Jabbar. M.A and Aluvalu. R, “RFAODE: A novel ensemble intrusion detection system,” Procedia
computer science, 115, pp. 226-234, 2017. Article (CrossRef Link)

[24] Gaikwad. D.P and Thool. R.C, “Intrusion detection system using bagging ensemble method of
machine learning,” in Proc. of 2015 international conference on computing communication
control and automation, pp. 291-295, Feb. 2015. Article (CrossRef Link)

[25] Moustafa. N, Turnbull. B, and Choo. K.K.R, “An ensemble intrusion detection technique based
on proposed statistical flow features for protecting network traffic of internet of things,” IEEE
Internet of Things Journal, 6(3), pp. 4815-4830, 2018. Article (CrossRef Link)

[26] McLaughlin. N, del Rincon. J.M, Kang. B, Yerima. S, and Miller. P, “Deep android malware
detection,” in Proc. of the Seventh ACM on Conference on Data and Application Security and
Privacy, pp. 301-308, 2017. Article (CrossRef Link)

[27] Maghrebi. H, Portigliatti. T, and Prouff. E, “Breaking cryptographic implementations using deep
learning techniques,” in Proc. of Security, Privacy, and Applied Cryptography Engineering: 6th
International Conference, SPACE, pp. 3-26, Dec. 2016. Article (CrossRef Link)

[28] Brun. O, Yin. Y, Gelenbe. E, Kadioglu. Y.M, Augusto-Gonzalez. J, and Ramos. M, “Deep learning
with dense random neural networks for detecting attacks against IoT-connected home
environments,” Procedia Computer Science, vol. 134, pp. 458-463, Feb. 2018.
Article (CrossRef Link)

[29] Diro. A.A and Chilamkurti. N, “Distributed attack detection scheme using deep learning approach
for Internet of Things,” Future Generation Computer Systems, 82, pp. 761-768, 2018.
Article (CrossRef Link)

[30] Torres. P, Catania. C, Garcia. S, and Garino. C.G, “An analysis of recurrent neural networks for
botnet detection behavior,” in Proc. of 2016 IEEE biennial congress of Argentina
(ARGENCON), pp. 1-6, 2016. Article (CrossRef Link)

[31] Atiga. J, Mbarki. N.E, Ejbali. R, and Zaied. M, “Faulty node detection in wireless sensor networks
using a recurrent neural network,” in Proc. of Tenth international conference on machine vision
(ICMV 2017), Vol. 10696, pp. 711-716, 2018. Article (CrossRef Link)

[32] Vu. L, Nguyen. Q.U, Nguyen. D.N, Hoang. D.T, and Dutkiewicz. E, “Learning latent
representation for iot anomaly detection,” IEEE Transactions on Cybernetics, 52(5), pp. 3769-
3782, 2022. Article (CrossRef Link)

[33] Abdel-Basset. M, Chang. V, Hawash. H, Chakrabortty. R.K, and Ryan. M, “Deep-IFS: Intrusion
detection approach for industrial internet of things traffic in fog environment,” IEEE Transactions
on Industrial Informatics, 17(11), pp. 7704-7715, 2020. Article (CrossRef Link)

https://doi.org/10.1016/B978-0-12-815480-9.00015-3
https://doi.org/10.1016/j.suscom.2022.100805
https://doi.org/10.1109/BigData52589.2021.9671576
https://www.scitepress.org/Link.aspx?doi=10.5220/0006639801080116
https://doi.org/10.1109/MCI.2015.2471235
https://doi.org/10.1016/j.procs.2017.09.129
https://doi.org/10.1109/ICCUBEA.2015.61
https://doi.org/10.1109/JIOT.2018.2871719
https://doi.org/10.1145/3029806.3029823
https://link.springer.com/chapter/10.1007/978-3-319-49445-6_1
https://doi.org/10.1016/j.procs.2018.07.183
https://doi.org/10.1016/j.future.2017.08.043
https://doi.org/10.1109/ARGENCON.2016.7585247
https://doi.org/10.1117/12.2314837
https://doi.org/10.1109/TCYB.2020.3013416
https://doi.org/10.1109/TII.2020.3025755

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 777

[34] Imrana. Y, Xiang. Y, Ali. L, and Abdul-Rauf. Z, “A bidirectional LSTM deep learning approach
for intrusion detection,” Expert Systems with Applications, 185, p. 115524, 2021.
Article (CrossRef Link)

[35] Habib. M, Aljarah. I, and Faris. H, “A modified multi-objective particle swarm optimizer-based
Lévy flight: An approach toward intrusion detection in Internet of Things,” Arabian Journal for
Science and Engineering, 45, pp. 6081-6108, 2020. Article (CrossRef Link)

[36] Chen. Y, Lin. Q, Wei. W, Ji. J, Wong. K.C, and Coello. C.A.C, “Intrusion detection using multi-
objective evolutionary convolutional neural network for Internet of Things in Fog computing,”
Knowledge-Based Systems, 244, p. 108505, 2022. Article (CrossRef Link)

[37] Zhu. Y, Liang. J, Chen. J, and Ming. Z, “An improved NSGA-III algorithm for feature selection
used in intrusion detection,” Knowledge-Based Systems, 116, pp. 74-85, 2017.
Article (CrossRef Link)

[38] Y.H. Yang, H.Z. Huang, Q.N. Shen, Z.H. Wu, and Y. Zhang, “Research on intrusion detection
based on incremental GHSOM,” Chinese J. Comput. 37(5), pp. 1216–1224, 2014
Article (CrossRef Link)

[39] LeCun. Y and Bengio. Y, “Convolutional networks for images, speech, and time series,” The
handbook of brain theory and neural networks, 3361(10), p. 1995, 1995. Article (CrossRef Link)

[40] Kim. J, Shin. Y, and Choi. E, “An intrusion detection model based on a convolutional neural
network,” Journal of Multimedia Information System, 6(4), pp. 165-172, 2019.
Article (CrossRef Link)

[41] Kursawe. F, “A variant of evolution strategies for vector optimization,” in Proc. of Parallel
Problem Solving from Nature: 1st Workshop, pp. 193-197, June. 2005. Article (CrossRef Link)

[42] Panigrahi. R and Borah. S, “A detailed analysis of CICIDS2017 dataset for designing Intrusion
Detection Systems,” International Journal of Engineering & Technology, 7(3.24), pp. 479-482,
2018. Article (CrossRef Link)

[43] Assis. M.V, Carvalho. L.F, Lloret. J, and Proença Jr. M.L, “A GRU deep learning system against
attacks in software defined networks,” Journal of Network and Computer Applications, 177, p.
102942, 2021. Article (CrossRef Link)

[44] Vinayakumar. R, Soman. K.P, and Poornachandran. P, “A comparative analysis of deep learning
approaches for network intrusion detection systems (N-IDSs): deep learning for N-
IDSs,” International Journal of Digital Crime and Forensics (IJDCF), 11(3), pp. 65-89, 2019.
Article (CrossRef Link)

[45] Gamage. S and Samarabandu. J, “Deep learning methods in network intrusion detection: A survey
and an objective comparison,” Journal of Network and Computer Applications, 169, p. 102767,
2020. Article (CrossRef Link)

[46] Lv. Z, Qiao. L, Li. J, and Song. H, “Deep-learning-enabled security issues in the internet of
things,” IEEE Internet of Things Journal, 8(12), pp. 9531-9538, 2020. Article (CrossRef Link)

[47] Muhammad. G, Hossain. M.S, and Garg. S, “Stacked autoencoder-based intrusion detection
system to combat financial fraudulent,” IEEE Internet of Things Journal, vol. 10, no. 3, pp. 2071–
2078, 2023. Article (CrossRef Link)

[48] Altunay. H.C and Albayrak. Z, “A hybrid CNN+ LSTM based intrusion detection system for
industrial IoT networks,” Engineering Science and Technology, an International Journal, 38, p.
101322, 2023. Article (CrossRef Link)

[49] Altunay. H.C and Albayrak. Z, “Network Intrusion Detection Approach Based on Convolutional
Neural Network,” Avrupa Bilim ve Teknoloji Dergisi, (26), pp. 22-29, 2021.
Article (CrossRef Link)

[50] Kavitha. S, Uma Maheswari. N, and Venkatesh. R, “Intelligent Intrusion Detection System using
Enhanced Arithmetic Optimization Algorithm with Deep Learning Model,” Tehnički
vjesnik, 30(4), pp. 1217-1224, 2023. Article (CrossRef Link)

[51] Khan. M.A, Iqbal. N, Jamil. H, and Kim. D.H, “An optimized ensemble prediction model using
AutoML based on soft voting classifier for network intrusion detection,” Journal of Network and
Computer Applications, 212, p. 103560, 2023. Article (CrossRef Link)

https://doi.org/10.1016/j.eswa.2021.115524
https://link.springer.com/article/10.1007/s13369-020-04476-9
https://doi.org/10.1016/j.knosys.2022.108505
https://doi.org/10.1016/j.knosys.2016.10.030
https://www.researchgate.net/publication/286854340_Research_on_intrusion_detection_based_on_incremental_GHSOM
https://www.researchgate.net/publication/216792820_Convolutional_Networks_for_Images_Speech_and_Time-Series
https://doi.org/10.33851/JMIS.2019.6.4.165
https://link.springer.com/chapter/10.1007/bfb0029752
https://www.researchgate.net/profile/Ranjit-Panigrahi/publication/329045441_A_detailed_analysis_of_CICIDS2017_dataset_for_designing_Intrusion_Detection_Systems/links/5c264977a6fdccfc706e43b6/A-detailed-analysis-of-CICIDS2017-dataset-for-designing-Intrusion-Detection-Systems.pdf
https://doi.org/10.1016/j.jnca.2020.102942
https://doi.org/10.4018/IJDCF.2019070104
https://doi.org/10.1016/j.jnca.2020.102767
https://doi.org/10.1109/JIOT.2020.3007130
https://doi.org/10.1109/JIOT.2020.3041184
https://doi.org/10.1016/j.jestch.2022.101322
https://doi.org/10.1016/j.jestch.2022.101322
https://doi.org/10.1016/j.jestch.2022.101322
https://doi.org/10.31590/ejosat.954966
https://doi.org/10.17559/TV-20221128071759
https://doi.org/10.1016/j.jnca.2022.103560

778 Alexander. R et al.: Genetic Algorithm based hyperparameter
tuned CNN for identifying IoT intrusions

Alexander R received the B.E. degree in Computer Science and Engineering from Anna
University,2006 and M.E. degree in Computer Science and Engineering from Anna
University, 2011. He is pursuing Ph.D in the Department of Computing Technologies, SRM
Institute of Science and Technology, Kattankulathur, Tamil Nadu, India. His research
interests include Federated Learning, Fog Computing, Network Security, Deep Learning,
Cloud Computing, Internet of things and Machine learning.

Pradeep Mohan Kumar K received the B.E. degree in Computer Science and
Engineering from Anna University, 2005, M.E. degree in Computer Science and Engineering
from Annamalai University, 2007 and Ph.D degree in Periyar Maniammai Institute of Science
and Technology, India, 2016. He is an Associate Professor in the Department of Computing
Technologies, SRM institute of Science and Technology Kattankulathur, Tamil Nadu, India.
His research interests include AI/ML, IoT, Cloud Computing, Network Security.

