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Abstract 

 
In recent years, the number of devices being connected to the internet has grown enormously, 
as has the intrusive behavior in the network. Thus, it is important for intrusion detection 
systems to report all intrusive behavior. Using deep learning and machine learning algorithms, 
intrusion detection systems are able to perform well in identifying attacks. However, the 
concern with these deep learning algorithms is their inability to identify a suitable network 
based on traffic volume, which requires manual changing of hyperparameters, which 
consumes a lot of time and effort. So, to address this, this paper offers a solution using the 
extended compact genetic algorithm for the automatic tuning of the hyperparameters. The 
novelty in this work comes in the form of modeling the problem of identifying attacks as a 
multi-objective optimization problem and the usage of linkage learning for solving the 
optimization problem. The solution is obtained using the feature map-based Convolutional 
Neural Network that gets encoded into genes, and using the extended compact genetic 
algorithm the model is optimized for the detection accuracy and latency. The CIC-IDS-2017 
and 2018 datasets are used to verify the hypothesis, and the most recent analysis yielded a 
substantial F1 score of 99.23%. Response time, CPU, and memory consumption evaluations 
are done to demonstrate the suitability of this model in a fog environment.  
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1. Introduction 

We are instantly awakened by Alexa or Siri with our curtains open, making our daily routine 
hassle-free. We've got our microwaves set up to begin cooking.  We have actually grown better 
organized as a result of all the equipment being interconnected, and sure, Industry 4.0 has 
arrived thanks to Internet of Things (IoT) networks [1]. IoT networks are an attempt to connect 
numerous devices, including those with computing power, sensors, etc. so that devices can 
communicate with each other for improved functioning over the internet [2]. Although it may 
seem theoretically straightforward, this is made possible by the development and integration 
of many significant technologies of this era, including Big Data, Artificial Intelligence, 5G, 
fog computing, and others. By 2025, it is anticipated that 21.5 billion devices will be connected 
using these technologies [3]. Better functionality will undoubtedly result from an increase in 
the number, but it could also pave the way for security-related assaults. The number of threats 
aimed at Internet of Things (IoT) devices has significantly increased, according to the 
SonicWall report [4]. According to the research, intrusions and other encrypted threats have 
increased worldwide by 132% while IoT malware attacks have increased by 77%. Additionally, 
it is predicted that this number will rise in the ensuing years. 

The protection of this network is of the utmost importance because IoT networks become 
intertwined with regular human activities. Identifying any form of abnormal behavior in the 
IoT network is crucial and this is done conventionally using firewalls, gateways, and 
encryption technology. These methodologies do not hold significant results as they are all 
mechanisms that can’t respond to the newer forms of attacks instantly. The most essential and 
practical defense for any network is intrusion detection systems (IDS). Whether a connection 
is cable or wireless, the intrusion detection system plays a crucial role in protecting the network 
[5]. There are some differences between IoT intrusion detection systems and wired or wireless 
network IDS. Due to the heterogeneity of IoT networks, there are some reasons why we cannot 
deploy the same wired or wireless IDS into the IoT network. The computing power, operating 
systems, protocols, and battery lives of the devices utilized in IoT networks vary [6]. Since 
each device implements a security system differently, using strong encryption techniques 
typically requires a lot of CPU power, which most IoT network devices don't have. This 
necessitates a particular kind of IDS that can operate in spite of heterogeneity and also 
recognize and respond to an intrusion attempt like a human. 

The sorts of attacks detected in the IoT network vary as well based on the IoT network's 
architectural variations. The following are some specifics of layer-wise attacks in the IoT 
network. Attacks on the perception layer include service integrity, eavesdropping, jamming, 
DoS, and Man-In-The-Middle (MITM) attacks. Selective forwarding, Sybil, sinkholes, 
wormholes, and acknowledgment are examples of network layer attacks. Sniff, Inject, Hijack, 
DDoS, and Social Engineering are examples of application layer attacks.  

In addition, several design-level assaults are frequently seen in IoT networks. IoT-IDS as 
it is now can recognize and report attacks at both the layer-level and design-level. 

1.1 Motivation 
The true problem, though, occurs when the adversary creates an entirely new kind of attack. 
The existing IoT-IDS is unable to respond appropriately and frequently generates false alarms 
as a result. This calls for a more robust IoT-IDS that can handle newer traffic types more 
successfully.  Various strategies, including data mining, heuristics, ontology-based systems, 
and more recent innovations like machine learning and deep learning, have been used to create 
a robust IDS [7]. Machine learning and deep learning are recognized as appropriate techniques 
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to enable the intrusion system to make proactive judgements and think like a person. Support 
vector machines [8] and random forests [9] are a couple of the machine learning techniques 
that are employed. Even while using machine learning algorithms produced impressive results 
in terms of detection accuracy, there are several issues to be aware of when using ML for IoT-
IDS. The main worry is that the IoT network is expandable and that the volume of generated 
traffic will rise as well. Therefore, using an ensemble or any other hybrid technique, as those 
employed in wireless networks [10], may not be the best course of action because they can 
lengthen the time needed for detection [11]. Machine learning algorithms take too long when 
working with high-dimensional data, making them unsuitable for IoT-IDS. 

Deep learning is seen as being a critical component when it comes to handling this 
significant dimension of IoT data. To boost the IoT performance, IDS's several deep learning 
techniques are applied. Using various deep learning techniques, such as generative adversarial 
networks (GANs) [11], autoencoders [12], and deep neural networks (DNNs) [13], some of 
the trickier intrusion attempts can also be effectively handled. Despite the fact that detection 
accuracy can be quite high, performance or accuracy is tuned by the hyperparameters [14].  

The existing machine and deep learning approaches concentrate mainly on improving the 
detection accuracy of the intrusion detection system, and the accuracy holds significantly good 
for many of the models. However, the accuracy obtained cannot remain the same because the 
traffic volume and type are varied. This generates instability in training, hence affecting 
accuracy. So, while using deep or machine learning models, it is important to set the ideal 
parameters that can handle the data, irrespective of its volume and type. If the right parameters 
are not selected, it will have an impact on factors like training duration, computational expense, 
structure, and prediction accuracy. Thus, the auto-hyperparameter setting is crucial for the 
intrusion detection data so that the intrusion detection system can act more like a human. To 
circumvent this problem, the intrusion detection system, if equipped with automatic 
hyperparameter tuning, can set an ideal parameter for any type of traffic and volume. This is 
the focus of this work, and this auto-hyperparameter tuning using a genetic algorithm can help 
the model automatically set the hyperparameter values, irrespective of volume and type. 

1.2 Our major contributions 
Bayesian or evolutionary algorithms are two methods that can be used to solve the challenge 
of automatic hyperparameter tuning. The process of optimizing basic neural networks is 
carried out using some neuro-evolution approaches, including NEAT [15], EPNET [16], and 
GNARL [17]. One type of evolving network that can optimize the architecture and the 
hyperparameters for greater performance is DeepNEAT [18]. One of the common issues with 
the Bayesian approach is the amount of computer resources that are consumed in the process 
of building different models for different hyperparameters, thus making it unsuitable to run in 
fog nodes. Some of the algorithms, like catboost [19] and Bayesian optimization [20], tried to 
address the concern of more computing resources, but parallelism was not achieved. So to 
address the concerns of having low latency with a higher degree of parallelism, a novel 
approach using the Bayesian genetic technique is proposed to address the problem of manual 
ideal hyperparameter setting. The idea comes from the probabilistic model-building genetic 
algorithm (PMBGA) that operates based on the probability distribution recorded by the 
Bayesian network. This study expands on DeepNEAT's concept [19], in which the neural 
arrangement is transformed into a chromosome of the Extended Compact Genetic 
Algorithm(eCGA), in order to eliminate the issue of manually setting up the hyperparameter 
values and to provide a superior latency IDS. As a result, the IoT-IDS has evolved with varied 
degrees of precision and can be used to fog nodes. 
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The following are the paper's main contributions: 
1. Using the Extended Compact Genetic Algorithm, a novel evolutionary deep neural 

network is suggested for IoT-IDS in the fog environment (eCGA). This will determine 
which DNN model, in terms of accuracy and latency, should be used in the fog node. 

2. The Extended Compact Genetic Algorithm's goal is to minimize the classification 
error rate (eCGA) with the decrease in the number of parameters. With fewer relevant 
parameters, the accuracy of the model is increased. 

3. A population update that can produce a more accurate model for the following one 
helps to better direct evolution. 

The concept is examined using the CIC-IDS 2017 [21] and CIC-DDoS 2019 datasets, and 
the proposed methodology is compared to other cutting-edge techniques for higher accuracy 
and shorter latency.  

The remaining portions of the paper are structured as follows: 
The various deep learning techniques utilized to improve the IoT-detection IDS's accuracy are 
discussed in Section 2. The proposed methodology's overall architecture is presented in 
Section 3. The experimentation process is described in Section 4, the results are examined in 
Section 5, and the study is finished in Section 6. 

2 Background and Related Work 
The main goal of this research is to provide an enhanced-performance IoT-IDS with a high 
detection rate and minimal delay consumption. The state of the art in studies relevant to this 
study is discussed in this section, along with the present state of knowledge in those fields. 
Anyone can interfere with our daily activities and put our lives in risk thanks to the 
interconnected nature of the globe, like in the case of hacking a car and taking control of the 
steering wheel. To locate and stop these intruders, precautions must be taken, which is of the 
utmost importance. The development of artificial intelligence has made it possible to create a 
robust IoT-IDS, which is what is required today. For an IoT-IDS to be effective, machine 
learning and deep learning are essential. Thus, we first examine the different methods that 
have been applied thus far to increase detection accuracy in this literature, and then we 
examine the different ways that have been utilized thus far for parameter adjustment. 

2.1. State-of-the-art machine/deep learning models used in detecting intrusions 
In some recent studies using machine learning algorithms, voting, bagging, and stacking 
ensemble procedures have yielded very high detection accuracy [22]. For the identification of 
various protocol-based botnet attacks in IoT networks, an ensemble technique has been found 
that combines the three machine learning algorithms decision tree, Naive Bayes, and artificial 
neural network [23]. Another ensembled strategy suggested in [24] combines a random forest 
and an average one-dependence estimator that focuses on eliminating attribute dependencies 
in order to increase detection accuracy while simultaneously lowering the number of false 
alarms. This made it possible for the incremental learning process and allowed the relevant 
features for categorization to be captured. With the REPTree, the ensembled technique used 
with the NSL-KDD data [25] also attempted to lower the frequency of false alarms. The 
ensembled approach used here is bagging, which requires less time for model building. On top 
of that, several investigations are conducted employing the fundamental machine learning 
techniques. The parameters used to gauge the overall performance of the IDS have been the 
main source of complaints for most machine learning techniques. It was necessary to create 
appropriate metrics like scalability and throughput to confirm the performance of the IDS in a 
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very big network because measurements like accuracy, recall, and f1 score were insufficient 
to determine the performance of an IDS in such a huge network. Additionally, the majority of 
machine learning algorithms contributed to the overfitting issue, leading to the employment of 
more intricate modelling and deep learning techniques in the development of effective 
intrusion detection systems. 

Due to their improved performance with bigger dimensions, deep learning techniques have 
become more and more popular. The identification of attacks in IoT-IDS uses supervised, 
unsupervised, and hybrid deep learning methods. Deep neural network (DNN), convolutional 
neural network (CNN), and recurrent neural network (RNN) methods are frequently used in 
supervised settings [26–31]. The methods employed in [26-32] are all direct implementations 
of supervised learning algorithms; hence, they are not separately explained. Nevertheless, they 
are all utilized to execute botnet classifications for IoT networks or protocol-based attacks. 
Deep belief networks, autoencoders, and restricted Boltzmann machines are employed when 
the unsupervised learning technique is taken into consideration. The performance of the 
supervised learning setup is enhanced in the work [32] by the introduction of autoencoders. 
The goal is to train the autoencoders to learn the latent representation of the input data by 
regularizing them. Today, achieving a scalable IoT-IDS is essential, and this is done utilizing 
the deep learning method described in [33], where a master-slave network is used to spread 
the computations to the fog nodes. Two types of representation—local and global—are 
identified because of the master-slave connection and are learned utilizing the local gated 
recurrent unit (Local GRU) and multi-head attention mechanism. According to the findings, 
this strategy is ideally suited to manage the high volume of traffic in IoT-IDS. 

Employing hybrid techniques to achieve reduced latency using generative adversarial 
networks (GAN) is suggested in [11]. In this instance, a specialized GAN dubbed FID-GAN 
is utilized, which seeks to give computation resources on the fog and internally exploits the 
idea of federated learning. An encoder was also employed to hasten the loss. A memory 
remembering technique LSTM for handling the IoT traffic data is suggested in [34]. It is not 
a new concept to use evolutionary algorithms in intrusion detection systems, and there is a 
substantial body of research addressing algorithms like Genetic Algorithm (GA), Ant Colony 
Optimization (ACO), Particle Swarm Optimization (PSO), Artificial Bee Colony Optimization 
(ABC), Firefly Algorithm (FA), Bat Algorithm (BA), and Flower Pollination Algorithm (FPA). 
However, the majority of work using evolutionary algorithms aims to collect a minimal set of 
features to improve the model's classification accuracy. The best characteristics are chosen for 
the classification task using a method called multi-objective particle swarm optimization with 
a Levy flight randomization component (MOPSO-Lévy), which is suggested in [35]. The K-
nearest neighbors (KNN) algorithm is the classifier employed here. The combined CNN + 
LSTM architecture proposed in [48] holds the highest detection accuracy of 99.84% for binary 
and 99.80% for multi-class classification while using the X-IIoTID dataset.  

For the best feature set, similar techniques are utilized in [38]. In order to improve 
classification accuracy for the intrusion detection system, the idea of applying evolutionary 
techniques is therefore heavily utilized in the feature selection process. Some of the work 
related to this is proposed in [36,37]. The data imbalance is addressed using the SMOTE 
technique in [49] so that synthetic data are generated for balancing the attacks. 

2.2. State of the art for Auto Parameter Tuning 
The idea of employing evolutionary algorithms to optimize the models is still in its infancy. 
[36] proposes a novel approach to employing the evolutionary algorithm to evolve the 
classifier. The CNN is a classifier that was developed using an evolutionary approach. This 
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concept is an expansion of the one put forth in [37], which suggests a technique called 
CoDeepNEAT for creating optimized neural networks. An algorithmic approach for 
performing hyperparameter tuning is proposed in [50], where the arithmetic optimization 
algorithm is enhanced to improve the candidate solution's performance. The AutoML 
technique is used along with the ensembled strategy for the ideal selection of hyperparameters 
for the supervised setup using the voting mechanism proposed in [51]. Though these 
approaches propose a strategy for hyperparameter tuning, their major limitation is their 
inability to handle varied forms and volumes of data, which makes them require human 
assistance at some stage.  

So, this paper suggests an Extended Compact Genetic Algorithm deep neural network to 
develop the IoT-IDS, similar to the strategy used in [36], where the DNN hyperparameters are 
updated to a chromosome that takes the Bayesian framework for optimization into account. 
The measures that identify the linkage learning process are the model's complexity and 
performance. With the linkage learning process, a higher number of parameters results in a 
better detection value, which is desirable; nevertheless, a lesser number of parameters in DNN 
has an effect on performance. The objective is to optimize these metrics so that the parameters 
and detection rate of the ideal DNN setup are improved. A special fusion of genetic and 
probabilistic methods, probabilistic model-building genetic algorithms are used for this 
optimization. In order to provide improved latency, we then supply the fog environment with 
a set of DNN with the ideal parameters. 

3 The Proposed Methodology 
Since this methodology combines several techniques to produce a neural network with the best 
hyperparameters, it is presented here along with all the parts used to construct such a system. 
The expanded compact genetic algorithm and the CNN's evolution plan are given after the 
general structure of the feature-map-based CNN is described. A generic architecture is also 
described because the proposed method's latency reduction needs to be confirmed in the fog 
network. 

3.1 Feature-Map exploitation-based CNN 
Understanding the CNN's overall architecture is essential for choosing the optimum 
hyperparameter and realizing the necessity of a CNN based on feature-map exploitation. Let's 
thus examine the fundamental design of CNN as well as the justifications for selecting feature-
map-exploitation-based CNN for the encoding process. In the area of computer vision, the 
convolutional neural network (CNN) left a notable impression. Yann Lecun made the initial 
suggestion, and it was given the name LeNet [39]. The main idea behind CNN is the 
integration of feature extraction and classification, which makes it appropriate for both text 
classification and vision issues. Fig. 1, shows the general architecture of CNN. 
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Fig. 1.  General Architecture of CNN. 

 
The convolutional neural network (CNN) is made up of three basic components, as 

illustrated in Fig. 1, an input layer, a hidden layer that contains the convolution and pooling 
layers, and the classification layer, which is often a fully connected layer. 

Input Layer: Data's feature vector is transferred to the input layer. The input layer often 
receives input in the form of pictures. The CIC-IDS data is transformed into an image and 
provided as an input to CNN, as indicated in [40]. 

Convolutional Layer: The significant features of the input data must be filtered out by this 
layer. This is accomplished with the kernel's assistance. The set of learnable parameters is 
represented by the kernel. Convolution simply refers to a linear operation that is the dot 
product of the kernel and the input's bounding region. To create a feature map, the kernel is 
multiplexed in accordance with the stride value. As a result, the dimension of the feature map 
produced by the convolution process is decreased. The number of convolution layers in a CNN 
is also flexible, as is the kernel size. In terms of restricted interaction, which lowers the 
computation's memory demand, parameter sharing, and changes in the input directly affecting 
the output, this configuration of CNN's convolutional layer makes it superior. 

Pooling Layer: Similar to convolution, the pooling layer is in charge of lowering the 
computing cost by bringing down the input's dimensions. The input will therefore have 
reduced dimensions when it enters the pooling layer after passing through the convolutional 
layer; this layer then either does maximum pooling or average pooling. The ability of 
maximum pooling to prevent total noise activations as well as the fact that it goes through 
dimensionality reduction for noise removal make it a popular choice. 

Fully Connected Layer: This is referred to as the "classification layer," which ideally seeks 
to construct a non-linear function to determine the relationship between the input features and 
the output class. This non-linear function is chosen for the learning process based on the 
categorization type. After the input has been flattened, it is supplied into the feed-forward 
network, which is made up of several neurons and does backpropagation. After going through 
several epochs, the learning significantly rises. 

The number of distinctive qualities that aid in the identification of attacks needs to be given 
more focus in our work. So, a modified version of CNN is utilized, one that can automatically 
extract features and learns them in a hierarchical fashion. In order to comprehend the 
contribution of a particular input to the convolutional layer, a feature map visualization is 
performed. The procedures used to identify the traits that help identify classes are described 
in Algorithm 1. 
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Algorithm 1: Feature Map Exploitation 
• Input: Image 
• Output: Feature Maps 
• Define a visualization model 

o For every feature in an image 
 Do 

• Conversion of image to an array 
• Perform the Normalization operation by doing rescaling for the array 

 Iterate 
 Plot the convolutional and pooling layer 

o End for 
 
The most dominating elements that facilitate categorization are found through the 

development of the visualization model for the feature maps. Additionally, creating a model 
with more characteristics can cause the network to be overfit. As a result, feature selection is 
essential for solving accurate classification problems, and feature map exploitation-based 
CNN is used to do this.  

Another important thing to be considered for our work is the idea of hyperparameters 
because this entire work concentrates on auto setting of the hyperparameters so as to obtain an 
optimal neural network automatically. Some of the hyperparameters that aids in the learning 
process of the model are as follows: 

Learning Rule: As the name suggests, we outline the reasoning behind how the neural 
network should process data. Learning takes place iteratively in a neural network with 
continuously updated weights and biases and a prescribed mathematical logic. Hebbian, 
Perceptron, Delta, Correlation, and Outstar are a few of the well-known learning rules.  

Batch Size: The quantity of samples chosen for training in a single iteration is referred to 
as the batch size. In order for the model to learn and optimize as rapidly as possible, picking 
the appropriate batch size is important. Again, there is no hard and fast rule for selecting the 
batch size, and we typically find the best batch size by trial and error.  

Dropout Rate: This hyperparameter, as its name suggests, specifies the likelihood that a 
node should be dropped. Given that it avoids the overfitting issue, this is a crucial part of neural 
network training. A whole new neural configuration is created from the parent network by 
defining the dropout probability. 

Activation Function: There should be a system that determines whether a specific input 
node is important for training or not since it is crucial for the neural network to learn just the 
relevant input throughout the learning process. The "activation function" is a mathematical 
notation used to make this determination that transforms the input. The activation function's 
purpose is to enable a node to get the output for a set of input values. 

Learning rate: The "learning rate" refers to how frequently the weights of the neural 
network are updated. The weights are updated significantly if a higher learning rate is selected. 

A neural arrangement can be described with hundreds of additional hyperparameters, such 
as mini-batch, in addition to the ones just mentioned. However, the most popular 
hyperparameters that, when improved, can considerably boost the network's performance are 
covered. Despite the fact that these rules are frequently created by hand, in our study we put 
the emphasis on allowing our feature-map exploitation-based CNN to evolve and then let it 
choose the type of optimum learning rule, rate, dropout rate, etc. Suppose if the input is defined 
by the weight(W), height (H) and the number of channels(C), the output is obtained with the 
filter(F) and stride(S). Thus, the output feature is obtained using the Equation (1) is 
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3.2 Evolutionary Strategy- Motivation 
When examining the CNN feature map's structure, it becomes evident that selecting the 
appropriate amount of convolution layers, pooling layers, and fully linked layers was 
challenging. It is also a laborious effort to select the appropriate hyperparameter values for the 
feature-map exploitation-based CNN unless there is prior experience working with a variety 
of use cases. There are several justifications for why we must choose the ideal hyperparameter 
value. Detection accuracy is improved by a deep neural network's capacity for learning. 
However, as it is deepened more, it typically overfits the data, which will directly affect the 
training time and processing resources.  

Two essential components of the IoT-IDS are increased compute power and accurate 
detection. Since the values of the hyperparameters have a significant impact on the 
computation resource and detection accuracy, this needs to be automatically configured to 
optimal so that, when it is deployed in a fog environment, it can create a lower latency. This 
is the primary driver behind the CNN-based feature-map exploitation conversion to a 
chromosome. 

The process of building the evolution model follows an encoding procedure in which all 
the components of the neural network have to be converted in such a way to be converted as a 
chromosome. Since our problem involves the usage of real numbers, we perform a value 
encoding to decide on the number of genes in our chromosome. Fig. 2, shows the gene details 
of the chromosome. 
 

 
Fig. 2.  Structure of the Genes in the Chromosome 

 
The probabilistic model genetic algorithm's overall chromosome structure thus consists of 

13 genes and the concept of evolving the CNN model to the chromosome is borrowed from 
this work [36]. No significant changes have been made because the goal of our research was 
to adapt the evolutionary algorithm to deal with large-scale, multidimensional data in the IoT 
environment by using the Bayesian approach. The gene structure thus resembles the one 
described in [36], with the addition of the feature map CNN being the only variation made at 
this level. The simplified notations and real value encoding used for the evolution process are 
displayed in Table 1. Our dataset contains multiclass scenarios, hence a SoftMax function was 
used as the activation function. 
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Table 1. Gene Encoded values [36] 
Genes of the Chromosome Encoded Values Notation 

Convolution layers 1,2,3 ConL 

Kernel number 2,4,8,16,32,64,128,256 KN 

Kernel size 2,3,4,5,6,7,8,9 Ksize 

Pooling layer number 0- No pooling, 1- Pooling PDecide 

Pooling layer size 2,3,4,5,6,7,8,9 Psize 

Number of Neurons 8,16.32,64,128,256,512,1024 Nnumber 

No. fully connected layers 3 Fconnected 

Dropout Rate 0,0.25,0.5 Drate 

Learning Rule Adam, Adamax Lrule 

Batch Size 32,64,128,256 Bsize 

Learning Rate 0.1,0.01,0.001,0.0001 Lrate 

Accuracy Needs to be Optimized 
Parameter Needs to be Optimized 

 

3.3 Probabilistic Model Building Genetic Algorithm-Extended Compact Genetic 
Algorithm(eCGA) 
Having defined the gene's initial population and the objective function that needs to be 
optimized, it is very clear that our objectives are multifunctional. As a result, it is critical to 
optimize the feature map CNN for multiple objectives. It is also known that when the model 
complexity increases, there is a possibility of a decrease in detection accuracy because of the 
vanishing gradient or the overfitting issue, whereas a decrease in model complexity increases 
detection accuracy. So, these two conflicting objective functions need to be defined as an 
objective function that can be handled by the genetic algorithm. There are only two approaches 
available to do this:  

1. The value of each objective function can be calculated by combining all the objective 
functions into one and using a weighted summation. 

2. The best answer is chosen from a set of optimal solutions using a meta-heuristic 
technique. 

Since most of the meta heuristic approaches uses the evolutionary algorithms, the second 
technique is used for optimizing both the objective functions simultaneously. In particular, the 
approach used here is similar to the VEGA [41]. Algorithm 2 explains the genetic algorithm 
approach for optimizing the multi objective problem. The procedure adopted here is the entire 
population is made as two and two solutions are obtained. For every solution, depending on 
the objective function value a fitness value is given. Based on these values, the best solutions 
are then chosen for the cross over and mutation. 
 

Algorithm 2: Multi-objective feature Map based CNN procedure 
Input:  

o N: Population {P1, P2, P3, P4, P5 ………… PN} 

o K: Subpopulation (N/K) {P1, P2, P3, P4, P5 ………… PK} {P1, P2, P3, P4, P5 ………… PK} 
o Z: Fitness Value 

Output:  
o Initial population is populated randomly P4 and the iteration is at i=0 

 if (P4 = stopping condition) 
• random sort (population) 

o for all the solutions in K: Subpopulation 
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 for i= 1+(K-1) PK …………K PK 
• set fitness value  
• Based on fitness 
• Select K solution for all the subpopulation 
• Perform crossover and mutation for subpopulation 

 i=i+1 
 end for 

o else  
 continue 

o end for 
o end 

 
The next step is to optimize the given genetic algorithm using CNN after establishing a 

multi-objective optimization function as a genetic algorithm. The extended genetic compact 
algorithm (eCGA), which is combined with this multi-objective function conversion, is then 
used to optimize the neural network. The choice of eCGA is made in this work because the 
encoding of eCGA is using the Bayesian network, and if the traditional eCGA, which uses 
probabilistic polling for subset generation, is modified to be deterministic, the computation 
resources will be reduced and it can process faster. 
Now that these theoretical facts have been taken into account, Algorithm 3 describes how to 
use the eCGA to produce the best feature map for the CNN. Because linkage learning occurs 
by selecting a better probability distribution, this algorithm is capable of both evolutionary and 
probabilistic optimization. The value that indicates a good distribution in this situation is the 
minimal description length. Even higher-order relationships can be simulated with eCGA 
because it is based on multivariate factorizations. With the help of the model complexity and 
the compressed population complexity, this technique achieves linkage learning, a method for 
identifying the major dependencies between the variables that make up the problem. For a 
cluster that is first initialized randomly, it assumes that all are equal and seeks to obtain an 
optimal probability distribution that minimizes the probability model and population. A good 
distribution has the smallest description length. Marginal distributions combine to generate the 
marginal product model known as eGCA. 

 
Algorithm 3: Extended Genetic Compact Algorithm(eCGA) based CNN (eCGA-CNN) 

Input:  
o N<-Number of Population {P1, P2, P3, P4, P5 ………… PN} 

o T<-Neighbourhood Size 

o Hmax  <- Maximum generation 

o Weight vectors with uniform spread N {w1, w2, w3, w4……………… wt } 

o Training and Testing set 
Output:  

o The final Population P 
o Identify the neighbourhood value of T for all subproblems (Algorithm 1) 
o Generate the population 
o For each individual in the population build a feature-map CNN  

 Initialize the clusters randomly 
 Nelder Mead Simplex search 
 Compute energy of each cluster 

o if (cluster = converged) 
 end 

o else 
 Build minimum description model 
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 Create new cluster 
o Iterate 
o for i = 1 to Hmax do 

 for j= 1 to N do 
• Reproduction: select random values from the cluster and get the 

new solution 
• Evaluate CNN 
• Update old cluster with new cluster 

 End for 
o End for 
o End for 

 

 
Fig. 3.  System Model of eCGA based CNN 

 
The overall system diagram including the training phase and evolutionary phase is 

showcased in Fig. 3.  The general steps in this process include one hot encoding preprocessing, 
selecting the best features for the model, and feeding the training and testing sets to the CNN 
to create genes with the ability to automatically tune the hyperparameters using the eCGA 
algorithm. 

3.4 Achieving Low latency in Fog Environment 
A low latency detection service is also being worked on as part of the development of an IoT-
IDS, in addition to increasing detection accuracy. In a typical network intrusion detection 
system, the IDS is often used on a potent server where the computational power and resources 
are immense. But since the devices and their computing capability are so varied in an IoT 
context, this is useless. According to IDC, the majority of data handled globally will be 
processed in a fog environment, necessitating the use of a security detective mechanism in a 
fog environment. This is important since low latency is guaranteed by fog computing, which 
means our suggested IoT-IDS will likewise operate with low latency. 
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As a result of the suggested linkage learning model's high computing requirements, the 

entire model training procedure cannot be implemented in a fog environment. The main 
problem is that it could require a lot of training time, which prevents it from meeting the low 
latency criteria. A cloud server might be utilized to conduct the training process. After that, 
the learned models are applied to fog devices that can provide real-time detection services with 
minimal latency.  

 
Fig. 4.  Incorporation of the proposed hyperparameter tuned model into the Fog Network 

 
Fig. 4, shows the way the fog network uses the trained model for detecting intrusive 

behavior. As illustrated in the figure, traffic generated by various IoT devices and received in 
the fog network is handled by multiple subcomponents to determine the traffic's location. The 
proposed methodology is specifically deployed inside the detection module, where the regular 
IDS runs and takes care of the classification of the traffic. 

4. Experimental configuration 
This section gives a quick overview of the technology and setting that were used for the studies. 
The datasets utilized in the trials are then supplied, along with instructions for pre-processing 
them. In order to assess the performance of the proposed system, various performance 
measures are finally introduced. 

4.1 Experimental Setup 
With help from Keras, Tensorflow, PyGAD, Numpy, and Pandas, the methodology is 
implemented using the Python 3.11.2 programming environment. The Ubuntu operating 
system and AMD Ryzen 5000 Series 7 hardware were used to conduct this experiment. The 
Windows 10 operating system, an Intel Core i5 CPU, 4GB of RAM, and the iFogSim tools are 
used to virtualize the fog node. 

4.2 Dataset Description 
Though there is a wide variety of intrusion datasets are available for the public, to carry out 
this work specific two variations of the IoT-IDS dataset CIC-IDS2017 and CIC-IDS2018 
dataset. The Canadian Institute for Cybersecurity dataset 2017 and 2018 is chosen because of 
its closeness towards the real IoT traffic data. This dataset is built using the five days normal 
and attack patterns observed in the Canadian institute of Cybersecurity. The features present 
in this dataset is 78 and the overall distribution of this dataset is shown in Fig. 5, along with 
the percentage of each attack is presented in Fig. 6, 7, 8, and 9.  
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Fig. 5.  Class Distribution plot for the CIC-IDS 2017 Dataset showing the number of instances for 

each class. 
 
 

  
Fig. 6.  Distribution percentage of the major 

class labels Benign and Attack 
Fig. 7.  Number of attacks in each of 

the attack class 
 
 

  
Fig. 8.  Group of Attacks that are holding the 

highest number of attack instances 
Fig. 9.  Group of Attacks that are holding the 

smallest number of attack instances 
 
 

More classes are included in the CIC-IDS 2018 dataset, which is organized daily. Data 
from event logs and network traffic are collected every day. This has 80 features, and Fig. 10, 
depicts the class distribution map of the same.  
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Fig. 10.  Class Distribution plot for the CIC-IDS 2018 Dataset 

 
Table 2, includes the same information in tabular style along with the number of each 

traffic source and its percentage. These simulated datasets were chosen because of their 
authenticity; even though the dataset demonstrates class imbalance, it can be useful to do a 
meta-analysis using them. Also, they are more similar to actual IoT traffic statistics. 
 

Table 2. Multi Class Label count values and the percentage of distribution 
Class Label Percentage 

Benign 13390249 0.829776 
DDOS attack-HOIC 686012 0.042511 

DDoS attacks-LOIC-HTTP 576191 0.035706 
DoS attacks-Hulk 461912 0.028624 

Bot 286191 0.017735 
FTP-BruteForce 193354 0.011982 
SSH-Bruteforce 187589 0.011625 

Infilteration 160639 0.009955 
DoS attacks-SlowHTTPTest 139890 0.008669 

DoS attacks-GoldenEye 41508 0.002572 
DoS attacks-Slowloris 10990 0.000681 

DDOS attack-LOIC-UDP 1730 0.000107 
Brute Force-Web 611 0.000038 
Brute Force-XSS 230 0.000014 

SQL Injection 87 0.000005 

4.3 Dataset Pre-processing 
In terms of data preparation, only the most elementary pre-processing removing null values 
and non-numeric characters is carried out for the two datasets. 2867 records from the CIC IDS 
2017 dataset were found to be useless and removed. Also, according to [42], there were 15 
classes present that were reduced to 7 classes. The infinite values in the CSECICIDS2018 
dataset were all converted to null values. Large correlations between a number of features were 
also present in the IDS2018 dataset; the feature map CNN will feature engineer these features. 
Some of the strongly associated traits are displayed in Table 3. Fig. 11, shows the feature map 
retrieved features. 

This job is performed in a neural network; hence it is necessary to convert the categorical 
form to a numeric representation. Hence, the conversion only uses one hot encoding. Then 
both the datasets are split into 60:20:20 for training, testing, and validation. 
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Table 3. Strong Correlated features requiring feature map reduction 
 Variable_1 Variable_2 Correlation 

0 tot_fwd_pkts subflow_fwd_pkts 1.000000 
1 fwd_psh_flags syn_flag_cnt 1.000000 
2 totlen_fwd_pkts subflow_fwd_byts 1.000000 
3 fwd_pkt_len_mean fwd_seg_size_avg 1.000000 
4 tot_bwd_pkts subflow_bwd_pkts 1.000000 
5 fwd_urg_flags cwe_flag_count 1.000000 
6 bwd_pkt_len_mean bwd_seg_size_avg 1.000000 
7 totlen_bwd_pkts subflow_bwd_byts 1.000000 
8 flow_iat_min fwd_iat_min 0.999996 
9 flow_iat_max fwd_iat_max 0.999994 
10 rst_flag_cnt ece_flag_cnt 0.999988 
11 flow_duration fwd_iat_tot 0.999986 
12 flow_iat_std fwd_iat_std 0.999981 
13 flow_iat_mean fwd_iat_mean 0.999963 
14 subflow_fwd_pkts fwd_act_data_pkts 0.999189 
15 tot_fwd_pkts fwd_act_data_pkts 0.999189 
16 bwd_header_len subflow_bwd_pkts 0.997798 
17 tot_bwd_pkts bwd_header_len 0.997798 

 

 
Fig. 11.   Feature Map extracted features 

5. Result Analysis 
The results are used to analyze the proposed system in two different ways. 

• To demonstrate the suggested system's superiority over other deep learning methods 
in terms of detection accuracy. 

• Some of the best-evolved model performances can be found when objective values 
are included and when the performance of the model changes as the hyperparameters 
evolve. 

Some of the quantifiable values are displayed in this section to demonstrate how well the 
suggested model works. 
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5.1 Population Analysis 
This population study is done to highlight the subset of present generational solutions. It is 
crucial to comprehend how evenly the individuals were dispersed throughout the first 
generation and in the last generation in order to say that the proposed methodology succeeded 
successfully. The fact that the individuals should be evenly dispersed suggests there hasn't 
been any premature convergence The CIC-IDS-2017 and 2018 beginning and final generation 
populations are plotted for the multiclass problem taking this into account. The results are 
given in Fig. 12 and 13. As observed in Fig. 12 and 13, the initial population shows the 
distribution irregularly exhibiting a high detection error rate. This value is significantly 
decreased in the final generation. A similar type of distribution is observed for the CIC-IDS-
2018 data as well. 
 

 
Fig. 12.  Distribution of Individuals in the initial and final generation CIC-IDS-2017 and 2018 

 

 
Fig. 13.  Distribution of Individuals in the initial and final generation CIC-IDS-2018 

 
The number of parameters and error rate have increased since the distribution is noticeably 

greater. The extreme values for both datasets are displayed in Table 4, for a quantitative 
examination.  
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Table 4. Quantitative values for extreme cases 
Dataset Factors Initial Generation Final Generation 

CIC-IDS-2017  
Number of Parameters 

parameters Error rate Parameters Error rate 
1320 16.21 1520 0.38 

Error rate (Minimum) 58,525 0.15 21,534 0.01 
Average 1,09,785 8.32 15,343 3.21 

CIC-IDS-2018 Number of Parameters 1682 14.21 289 11.26 
Error rate (Minimum) 78,352 0.11 1072 0.24 

Average 99,875 7.23 882 4.98 
 
As shown in Table 4, the final generation error rate and the number of parameters is 

significantly lower that shows with the proposed approach the detection performance and the 
complexity are greatly increased. The average number of parameters at both the initial and 
final generation shows a decreased error rate when the number of parameters is significantly 
reduced. The point that needs to be noted here is the effect of the number of parameters on the 
detection accuracy. Fig. 14, shows the distribution plot of the error.  
 

 
Fig. 14.  Distribution plot for the error generated without genetic algorithm and with genetic algorithm 

 
From Fig. 14, it is clear that the error rate is significantly lower at the final generation of 

parameters. The grey line indicating the final generation parameters is lower than that of the 
blue line that is showing the initial generation parameters and the similar results are observed 
for the final generation error rate as well. This visualization is done based on the values that 
we have obtained from Table 4.  
 

  
Fig. 15. Confusion Matrix of the CIC-IDS-2017 

dataset 
Fig. 16. Confusion Matrix of the CIC-IDS-2018 

dataset 
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The confusion matrix for the best-performed individual is shown in Fig. 15, 16 and Table 
5, 6 for CIC IDS 2017 and 2018 data. The detection accuracy outperformed in both the dataset 
with a value above 99%.   
 

Table 5. Quantitative values for best performed case in CIC IDS2017 
 precision recall f1-score support 

0 1.00 0.99 0.99 3645 
1 0.99 1.00 0.99 393 
2 1.00 1.00 1.00 19 
3 0.99 1.00 1.00 609 
4 0.42 0.71 0.53 7 
5 0.98 1.00 0.99 251 
6 0.98 0.99 0.98 436 

accuracy   0.99 5360 
macro avg 0.91 0.96 0.93 5360 
weighted avg 0.99 0.99 0.99 5360 

 
Table 6. Quantitative values for best performed case in CIC IDS2018 
 precision recall f1-score support 

0 1.00 0.99 1.00 3645 
1 0.99 1.00 0.99 393 
2 1.00 1.00 1.00 19 
3 1.00 1.00 1.00 609 
4 0.45 0.71 0.56 7 
5 0.98 1.00 0.99 251 
6 0.99 0.98 0.98 436 

accuracy   0.99 5360 
macro avg 0.92 0.95 0.93 5360 
weighted avg 0.99 0.99 0.99 5360 

5.2 Meta-Analysis 
To show the superiority of the proposed system to that of the other deep learning approaches 
that used manual hyperparameter tuning is compared along the detection accuracy values. 
Table 7, makes it abundantly evident that the proposed methodology outperformed in terms 
of optimization as well as detection accuracy, with noteworthy outcomes. 

 
Table 7. State-of-the-art comparative analysis with detection accuracy for CIC-IDS-2017 

Method Accuracy Precision Recall F1 
GRU [43] 98.53  77.59 74.23 75.66 

LSTM [44] 98.89  89.22 74.79 77.05 
AE-ANN [45] 98.13  54.20 53.31 54.74 

SDAE-SVM [46] 95.38  52.01 44.43 45.25 
SAE-DNN [47] 97.66  68.85 59.96 60.65 

Proposed  99.24 99.24 99.24 99.23 

5.3 Latency Analysis 
The pretrained eCGA-based model must be able to execute in the fog node for the claim of 
lower latency to be valid, and the amount of time it takes to react to attacks must also be 
confirmed. These fog nodes are simulated using the iFogSim simulation environment, and the 
pretrained models are made to operate in those nodes, in order to test this. The CPU and 
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memory consumption for the fog node when these nodes attempted to do this ranged from 10% 
to 20%, demonstrating the fog nodes' ability to support this methodology, which will result in 
lower latency. Fig. 17 and 18, shows the comparison of latency for cloud and fog nodes.  
 

  
Fig. 17.  Latency analysis for the Fog environment 

in terms of the QoS parameters 
Fig. 18.  Latency analysis for the Cloud 

environment in terms of the QoS parameters 
 
Thus, with the plotting of the population at the initial and final stages of population denotes 

a substantial reduction in the error rate and this clearly showed the relationship between the 
number of parameters and the error. With the reduction in error, the detection accuracy is 
improved and that is compared to the state-of-the-art for its superiority and the latency analysis 
exhibits the suitability of this approach at the fog node.  

6. Conclusion 
The method proposed in this study better automates the hyperparameter selection by utilizing 
the CNN feature map and an enhanced genetic compact algorithm. For executing the 
categorization of IoT-IDS network traffic, the genetic algorithm is used to achieve the goal of 
obtaining a superior neural network with automatic adjustments. IoT traffic is categorized 
using the feature map CNN, which is subsequently encoded as a chromosome for 
hyperparameter tweaking. With the CIC-IDS 2017 and 2018 datasets, a greater detection 
capacity is attained with this arrangement. For improved solution selection, the fitness value 
derived from the objective functions is used. The best performers within the population are 
selected to provide quantitative values for detection accuracy. By the results, we were able to 
show that the suggested procedure is effective at identifying the optimal choice. In terms of 
result analysis, the error rate is lower following population analysis, the latency is confirmed 
by contrasting the cloud and fog settings, and in terms of response time, it is clear that the fog 
requires less time than the cloud. 

Despite the automated hyperparameter adjustment capabilities of the proposed model, this 
system is evaluated on balanced data due to sample availability. These model parameters 
tuning findings must be confirmed on a significantly unbalanced dataset, though. Adversarial 
synthetic data production is required to include the data's imbalance. The next goal of this 
study is to verify the integration of Jacobian saliency approaches with SMOTE and GAN 
networks to produce adversarial samples instantaneously and create such a massive amount of 
diverse data. 
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